EFEKTIVITAS MODEL PEMBELAJARAN BERBASIS MULTIPEL REPRESENTASI DALAM MEMBANGUN MODEL MENTAL MAHASISWA TOPIK STOIKIOMETRI REAKSI
Abstract
Issues examined in this study is whether learning by using multiple representations model (SiMaYang) more effective in build mental models than conventional learning? The design of this study is a pretest and posttest control group design. The research sample taken randomly by stratified random sampling technique to obtain the experimental and control classes. The results of the research show that (1) SiMaYang learning model more effective in building student mental models compared to learning model that has been used by basic chemistry lecturers. (2) Implementation of SiMaYang learning model was able to build student mental models in learning of stoikiormetry topic. (3) After the implementation of SiMaYang model, student mental models on the topic of stoichiometry formed by the categories of "good" and "very good", with the characteristics of "consensus" and "target". Findings indicated thatmacro-sumiglcro-symbolic teaching by used SiMaYang model could be enhancing student mental models and learning effectivity of chemical reactions. Implications for instruction are clearly addressed in the discussion and recommended that SiMaYang learning model can be used as an alternative model of effective and efficient learning in developing a high level of understanding.
Isu yang dianalisis pada penelitian ini adalah apakah belajar menggunakan model multipel representasi (disebut SiMaYang) lebih efektif dalam membangun mental model dari belajar secara konvensional? Desain penelitian ini adalah pretest dan posttest kelompok kontrol. Sampel penelitian diambil secara acak dengan teknik sampling acak bertingkat untuk mendapatkan kelas kontrol dan kelas eksperimen. Hasil penelitian menunjukkan bahwa (1) model pembelajaran SiMaYang lebih efektif dalam membangun model mental mahasiswa dibandingkan model pembelajaran yang telah digunakan dosen kimia dasar. (2) implementasi model pembelajaran SiMaYang dapat membangun model mental mahasiswa dalam belajar topik stoikiometri. (3) setelah implementasi model SiMaYang, model mental mahasiswa pada topik stoikiometri terbentuk pada kategori baik dan sangat baik, dengan karakteristik konsensus dan target. Temuan mengindikasikan bahwa pengajaran macro-sumiglcro-symbolic menggunakan model SiMaYang dapat meningkatkan model mental mahasiswa dan efektivitas reaksi kimia. Implikasi petunjuk secara jelas dibahas pada diskusi dan direkomendasikan bahwa model pembelajaran SiMaYang dapat digunakan sebagai alternatif model pembelajaran yang efektif dan efisien dalam mengembangkan tingkat pemahaman yang tinggi.
Kata kunci: model mental, representasi multipel, SiMaYangFull Text:
PDFReferences
Ben-Zvi, R., Eylon B. and Silberstein, J., 1987, Students' visualisation of a chemical reaction, Educ. Chem., 24, p. 117-120.
Chandrasegaran, Treagust & Mocerino. 2007. Enhancing Students Use Of Multiple Levels Of Representation To Describe And Explain Chemical Reactions. School Science Review, 88. p. 325.
Chittleborough, G. and Treagust D. F. 2007. The Modelling Ability Of Non-Major Chemistry Students And Their Understanding Of The Sub-Microscopic Level, Chem. Educ. Res. Pract., 8, p. 274-292.
Coll, R.K., 2008. Chemistry Learners' Preferred Mental Models for Chemical Bonding. Journal of Turkish Science Education, 5, (1), p. 22-47.
Coll and Treagust, D.F., 2003. Investigation of Secondary School, Undergraduate and Graduate Learners' Mental Models of Ionic Bonding. Journal of Research in Science Teaching, 40, p. 464-486.
Dahsah, C., & Coll, R. K. 2008. Thai Grade 10 and 11 students' understanding of stoichiometry and related concepts. International Journal of Science and Mathematics Education, 6, No.3. p. 573-600.
Davidowitz, B., Gail Chittleborough, and Eileen Murray., 2010. Student-generated submicro diagrams: a useful tool for teaching and learning chemical equations and stoichiometry. Chem. Educ. Res. Pract., 11, 154-164.
Devetak, I., Erna Drofenik L., Mojca J., & Saša A. G., 2009. Comparing Slovenian year 8 and year 9 elementary school pupils' knowledge of electrolyte chemistry and their intrinsic motivation. Chem. Educ. Res. Pract., 10, p. 281-290.
Hake, R., 2002. Relationship of Individual Student Normalized Learning Gains in Mechanics with Gender, High-School Physics, and Pretest Scores on Mathematics and Spatial Visualization. Online: http://www.physics.indiana. edu/hake. Diakses : 22 Juli 2011
Haruo, O., Hiroki, F., & Manabu, S., 2009. Development of a lesson model in chemistry through Special Emphasis on Imagination leading to Creation (SEIC). Chemical Education Journal (CEJ). 13, No. 1. p. 1-6.
Jaber, L.Z. and Boujaoude, S., 2012. A Macro-Micro Symbolic Teaching to Promote Relational Understanding of Chemical Reactions. International Journal of Science Education. 34, No. 7, p. 973-998.
Johnstone, A.H., 2006. Chemical education research in Glasgow in perspective. Chemistry Education Research and Practice. 7, No. 2. p. 49-63.
Kozma, R., & Russell, J. 2005. Students Becoming Chemists: Developing Representational Competence. In J. Gilbert (Ed.), Visualization in science education. Vol. 7. Dordrecht: Springer. p. 121-145.
McBroom, R.A., 2011. Pre-Service Science Teachers' Mental Models Regarding Dissolution and Precipitation Reactions. A Dissertation Submitted to The Graduate Faculty of North Carolina State University in Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy. Raleigh, North Carolina.
Sunyono, Leny Yuanita, & Muslimin Ibrahim. 2011. Model Mental Mahasiswa Tahun Pertama dalam Mengenal Konsep Stoikiometri (Studi pendahuluan pada mahasiswa PS. Pendidikan Kimia FKIP Universitas Lampung. Prosiding Seminar Nasional V. 6 Juli 2011. Universitas Islam Indonesia. Yogyakarta.
Sunyono, Leny Yuanita, & Muslimin Ibrahim. 2012. Analisis Keterlaksanaan dan Kemenarikan Model Pembelajaran SiMaYang dalam Membangun Model Mental Mahasiswa pada Topik Stoikiometri. Prosiding Seminar Nasional Kimia dan Pendidikan Kimia. 6 Oktober 2012. Universitas Jenderal Soedirman. Purwokerto.
Thomas, D., & Seely, J.B., 2011. Cultivating the Imagination: Building Learning Environments for Innovation. Teachers College Record, February 17, 2011. p. 12.
Treagust, D.F., Chittleborough & Mamiala. 2003. The role of submicroscopic and symbolic representations in chemical explanations. Int. J. Sci. Educ., Vol. 25, No. 11, p. 1353-1368.
Treagust, D.F. 2008. The Role Of Multiple Representations In Learning Science: Enhancing Students' Conceptual Understanding And Motivation. In Yew-Jin And Aik-Ling (Eds).Science Education At The Nexus Of Theory And Practice. Rotterdam -Taipei : Sense Publishers. p. 7-23.
Wang, C.Y., 2007. The Role of Mental-Modeling Ability, Content Knowlwdge, and Mental Models in General Chemistry Students' Understanding about Molecular Polari. Dissertation for the Doctor Degree of Philosophy in the Graduate School of the University of Missouri. Columbia.
Wang, C.Y. & Barrow, L.H., 2013. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge. Chem. Educ. Res. Pract.,14. p. 130-146.
Refbacks
- There are currently no refbacks.
Copyright (c)
View My Stats
The copyright is reserved to The Jurnal Pendidikan Progresif that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.