Students’ Reversible Thinking Ability in Solving Quadrilateral Problems

Tata Frarisia, Sufyani Prabawanto, Cece Kustiawan

Abstract


Abstract: Students’ ability to engage in reversible thinking can enhance their problem- solving skills. Reversible thinking allows students to consider various perspectives, explore different options, and determine the best solution. Therefore, this study aims to describe students’ abilities to solve reversible thinking problems in the context of quadrilaterals, specifically rectangles. This research uses a qualitative method. The participants in this study were three junior high school students from Jambi, Indonesia, who demonstrated sufficient mathematical abilities. This study found that students could solve forward-thinking problems effectively but faced challenges with reversible thinking problems. This difficulty stems from students’ lack of familiarity with problems that require reversible thinking and their struggles with modeling mathematical scenarios from word problems. The study emphasizes the need to introduce more non-routine problems and exercises that encourage the exploration of various problem-solving approaches so that students can develop more flexible thinking skills.        

 

Keywords: reversible thinking, mathematics education, problem-solving, non-routine problem.



DOI: http://dx.doi.org/10.23960/jpmipa/v25i2.pp542-553

Full Text:

PDF

References


Amir, A. (2015). Pemahaman konsep dan pemecahan masalah dalam pembelajaran matematika. Logaritma, 3(1), 13–28.

Annizar, A. M., Maulyda, M. A., Khairunnisa, G. F., & Hijriani, L. (2020). Kemampuan pemecahan masalah matematis siswa dalam menyelesaikan soal pisa pada topik geometri. Jurnal Elemen, 6(1), 39–55. https://doi.org/10.29408/jel.v6i1.1688

Arjudin, Turmuzi, M., Kurniati, N., & Wulandari, N. P. (2024). Problem solving skills of mathematics education students with lack number sense ability. Jurnal Pendidikan MIPA, 25(1), 103–115.

Billstein, R., Libeskind, S., & Lott, J. W. (1993). A problem solving approach to mathematics for elementary school teachers (5th ed.). Addison-Wesley.

Creswell, J. W. (2014). Research design: qualitative, quantitative, and mixed methods approaches (4th ed.). Sage.

Dougherty, B. J., Bryant, D. P., Bryant, B. R., Darrough, R. L., & Pfannenstiel, K. H. (2015). Developing concepts and generalizations to build algebraic thinking: the reversibility, flexibility, and generalization approach. Intervention in School and Clinic, 50(5), 273–281. https://doi.org/10.1177/1053451214560892

Emanuel, E. P. L., Kirana, A., & Chamidah, A. (2021). Enhancing students’ ability to solve word problems in Mathematics. Journal of Physics: Conference Series, 1832(1). https://doi.org/10.1088/1742-6596/1832/1/012056

Flanders, S. T. (2014). Investigating flexibility, reversibility, and multiple representation in a calculus environment. University of Pittsburgh.

Hackenberg, A. (2005). Construction of algebraic reasoning and mathematical caring relations. In Dissertation. University of Georgia.

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A., Wearne, D., Hiebert, J., & Carpenter, T. P. (2012). Solving.

Ikram, M., Purwanto, Parta, I. N., & Susanto, H. (2020). Exploring the potential role of reversible reasoning: Cognitive research on inverse function problems in mathematics. Journal for the Education of Gifted Young Scientists, 8(1), 591–611. https://doi.org/10.17478/jegys.665836

Inlehder, B., & Piaget, J. (2002). The growth of logical thinking from childhood to adolescence (5th ed.). Routledge.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85. https://doi.org/10.1007/BF02300500

Kang, Mee -Kwang & Lee, B.-S. (1999). On fuzzified representation of piagetian reversible thinking. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 3(2), 99–112. http://www.koreascience.or.kr/search/articlepdf_ocean.jsp?admNo=SHGHEN_199 9_v3n2_99

Kilpatrick, J. (2010). Helping children learn mathematics. In Academic Emergency Medicine (Vol. 17, Issue 12). ftp://129.132.148.131/EMIS/journals/ZDM/zdm026r1.pdf

Klimov, A., & Shamir, A. (2003). A new class of invertible mappings. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2523, 470–483. https://doi.org/10.1007/3-540- 36400-5_34

Maf’Ulah, S., Fitriyani, H., Yudianto, E., Fiantika, F. R., & Hariastuti, R. M. (2019). Identifying the reversible thinking skill of students in solving function problems. Journal of Physics: Conference Series, 1188(1). https://doi.org/10.1088/1742- 6596/1188/1/012033

Maf’ulah, S., & Juniati, D. (2019). Students’ strategies to solve reversible problems of function: the part of reversible thinking. Journal of Physics: Conference Series, 1417(1). https://doi.org/10.1088/1742-6596/1417/1/012051

Maf’ulah, S., & Juniati, D. (2020). Exploring reversible thinking of preservice mathematics teacher students through problem-solving task in algebra. Journal of Physics: Conference Series, 1663(1). https://doi.org/10.1088/1742- 6596/1663/1/012003

Melani, R., Herman, T., Hasanah, A., Mefiana, S. A., & Samosir, C. M. (2023). Kemampuan membuat model matematika dan daya juang produktif siswa SMP dalam menyelesaikan soal pemecahan masalah. Jurnal Cendekia : Jurnal Pendidikan Matematika, 7(3), 2391–2404. https://doi.org/10.31004/cendekia.v7i3.2545

Norton, A. (2016). (IR) reversabbility in mathematics. International Group for the Psychology of Mathematics Education, 8.

Olive, J., & Steffe, L. P. (2001). The construction of an iterative fractional scheme: The case of Joe. Journal of Mathematical Behavior, 20(4), 413–437. https://doi.org/10.1016/S0732-3123(02)00086-X

Palupi, S. R. E., & Andrijati, N. (2024). Discovery learning model assisted by geogebra-based napier bones on students’ division problem solving ability. Jurnal Pendidikan MIPA, 25(1), 223–235.

Pebrianti, A., Prabawanto, S., & Nurlaelah, E. (2023). How do students solve reversible thinking problems in mathematics? Jurnal Elemen, 9(2), 630–643. https://doi.org/10.29408/jel.v9i2.17821

Pebrianti, A., & Suhendra, S. (2023). Ways of thinking senior high school student to solve geometri van hiele problem use reversible thinking ability. Al-Jabar : Jurnal Pendidikan Matematika, 14(2), 401. https://doi.org/10.24042/ajpm.v14i2.18116

Prabawanto, S. (2023). Improving prospective mathematics teachers’ reversible thinking ability through a metacognitive-approach teaching. Eurasia Journal of Mathematics, Science and Technology Education, 19(6). https://doi.org/10.29333/ejmste/13201

Ramful, A. (2015). Reversible reasoning and the working backwards problem solving strategy. The Australian Mathematics Teacher, 71(4), 28–32.

Rejeki, S., & Rahmasari, L. (2022). Students’ problem-solving ability in number patterns topic viewed from cognitive styles. Jurnal Elemen, 8(2), 587–604. https://doi.org/10.29408/jel.v8i2.5699

Resnick, L. B. (1987). Education and learning to think. in education and learning to think (issue september). https://doi.org/10.17226/1032

Simon, M. A., Kara, M., Placa, N., & Sandir, H. (2016). Categorizing and promoting reversibility of mathematical concepts. Educational Studies in Mathematics, 93(2), 137–153. https://doi.org/10.1007/s10649-016-9697-4

Suryadi, D. (2019). Landasan filsofis penelitian desain didaktis (DDR). Gapura Press. Sweller. (1988). Cognitive Load During Problem Solving: Effects on Learning – Sweller - 2010 - Cognitive Science - Wiley Online Library. Cognitive Science, 285, 257–285. https://doi.org/10.1016/0364-0213(88)90023-7

Utari, D. rizky, Wardana, M. Y. S., & Damayani, A. T. (2019). Analisis kesulitan belajar matematika dalam menyelesaikan soal cerita. Jurnal Ilmiah Sekolah Dasar, 3(4), 534–540.

Waty, E. R. K. (2017). Menelaah kualitas soal ujian sekolah buatan guru pada pencapaian kelulusan siswa. Jurnal Pendidikan Dan Pemberdayaan Masyarakat, 4(2), 11–17.

Widodo, S. A., Ibrahim, I., Hidayat, W., Maarif, S., & Sulistyowati, F. (2021). Development of mathematical problem solving tests on geometry for junior high school students. Jurnal Elemen, 7(1), 221–231. https://doi.org/10.29408/jel.v7i1.2973


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Pendidikan MIPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats

Creative Commons License
The copyright is reserved to The Jurnal Pendidikan MIPA that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.