Developing the Test Items Based on High Order Thinking Skills in Chemical Equilibrium Materials Using Rasch Model

Ade Ariyani, Ratu Evina Dibyantini, Ayi Darmana

Abstract


Development the Test Items Based on High Order Thinking Skills in Chemical Equilibrium Materials Using Rasch Model. Objectives:This study aims to develop HOTS (High Order Thinking Skill) based items on chemical equilibrium material using the Rasch model. Methods: The type of research used is research and development through the ADDIE model. Respondents in the study were 25 students of class XII at the Superior High School in North Sumatra, distinguished by gender and grade X. Findings: The test items developed consisted of 10 questions that had gone through the validation stage by experts and then tested and analyzed using the Winsteps software. Conclusion: Content validation obtained 100% fit indexed items; the reliability of the person category is sufficient and the item is in the good category with Cronbach α=0.72 (good); the value of separation person (1.27) is in the weak category and item (2.49) is in the good category; Item difficulty levels are sorted from very easy: medium: difficult: very difficult. Respondents with codes 02LO and 24LO (logit +4.36) are respondents with the highest ability, codes 18PR and 19PR (logit -1.97) are respondents with the lowest ability. Guttman Matrix Scalogram, two respondents have the potential to guess the answer and four respondents have the potential to commit fraud.

Keywords: HOTS Items, Chemical Equilibrium, Rasch Model.

DOI : 10.23960/jppk.v13.i1.2024.01


Full Text:

PDF

References


Astari, M. A., Masykuri, M., Susilowati, E., & Yamtinah, S. (2023). Effectiveness of Online Learning with the Web-based TPACK Scaffolding for Enhancement TPACK Ability of Pre-service Chemistry Teachers. Journal of Curriculum and Teaching, 12(1). https://doi.org/10.5430/jct.v12n1p183

Bond, T., Yan, Z., & Heene, M. (2020). Applying the rasch model: Fundamental measurement in the human sciences. Applying the Rasch Model: Fundamental Measurement in the Human Sciences. https://doi.org/10.4324/9780429030499

BSNP. (2020). Paradigma Pendidikan Nasional di Abad 21. Badan Standar Nasional Pendidikan.

Chi, S., Wang, Z., & Liu, X. (2022). Assessment of Context-Based Chemistry Problem-Solving Skills: Test Design and Results from Ninth-Grade Students. Research in Science Education, 53(2), 295–318. https://doi.org/10.1007/s11165-022-10056-8

Darmana, A., Sutiani, A., Nasution, H. A., Ismanisa, I., & Nurhaswinda, N. (2021). Analysis of Rasch Model for the Validation of Chemistry National Exam Instruments. Jurnal Pendidikan Sains Indonesia, 9(3), 329–345. https://doi.org/10.24815/jpsi.v9i3.19618

Hale, L. V. A., Lutter, J. C., & Shultz, G. V. (2016). The development of a tool for measuring graduate students’ topic specific pedagogical content knowledge of thin layer chromatography. Chemistry Education Research and Practice, 17(4), 700–710. https://doi.org/10.1039/c5rp00190k

Harta, J., Rasuh, N. T., & Seriang, A. (2020). Using HOTS-Based Chemistry National Exam Questions to Map the Analytical Abilities of Senior High School Students. Journal of Science Learning, 3(3), 143–148. https://doi.org/10.17509/jsl.v3i3.22387

He, P., Zheng, C., & Li, T. (2022). Upper Secondary School Students’ Conceptions of Chemical Equilibrium in Aqueous Solutions: Development and Validation of A Two-Tier Diagnostic Instrument. Journal of Baltic Science Education, 21(3), 428–444. https://doi.org/10.33225/jbse/22.21.428

Kim How, R. P. T., Zulnaidi, H., & Rahim, S. S. B. A. (2022). Development of Higher-Order Thinking Skills test instrument on Quadratic Equations (HOTS-QE) for Secondary School Students. Pegem Egitim ve Ogretim Dergisi, 13(1), 379–394. https://doi.org/10.47750/pegegog.13.01.41

Lestari, W. T., Saputro, S., Masykuri, M., Hastuti, B., Ulfa, M., Mulyani, S., & Yamtinah, S. (2020). Item analysis of teachnological pedagogical content knowledge (TPACK) in pre-service chemistry teachers using the Rasch Model application. Journal of Physics: Conference Series, 1511(1). https://doi.org/10.1088/1742-6596/1511/1/012043

Linacre, J. M. (2016). A User’s guide to Winsteps-ministep: Rasch-model computer programs. Program Manual.

Liu, C., & Jurich, D. (2023). Outlier Detection Using t-test in Rasch IRT Equating under NEAT Design. Applied Psychological Measurement. Applied Psychological Measurement, 47(1), 34–47. https://doi.org/10.1177/01466216221124045

Lubis, A. R., Sudrajad, A., & Nugraha, A. W. (2021). Pengembangan Instrument Asessment Higher Order Thinking Skill (HOTS) Untuk Mengukur Kemampuan Berpikir Tingkat Tinggi Pada Materi Hidrolisis Garam. Prosiding Seminar Nasional Kimia dan Kependidikan Kimia, 173–181.

Napitupulu, N. M., & Yusuf, M. (2022). Pengembangan Instrumen Tes Berbasis HOTS (Higher Order Thinking Skills) Pada Materi Laju Reaksi Kimia. Jurnal Sekolah, 6(3), 162–168. https://doi.org/10.24114/js.v6i3.36179

OECD. (2023). PISA 2022 Results (Volume I): The State of Learning and Equity in Education. OECD Publishing. Paris. https://doi.org/10.1787/53f23881-en

Oliva, J. M., & Blanco, Á. (2022). Rasch analysis and validity of the construct understanding of the nature of models in Spanish-speaking students. European Journal of Science and Mathematics Education, 11(2), 344–359. https://doi.org/10.30935/scimath/12651

Shakeel, S. I., Al Mamun, M. A., & Haolader, M. F. A. (2022). Instructional design with ADDIE and rapid prototyping for blended learning: validation and its acceptance in the context of TVET Bangladesh. Education and Information Technologies. https://doi.org/10.1007/s10639-022-11471-0

Silviariza, W. Y., Sumarmi, S., Utaya, S., Bachri, S., & Handoyo, B. (2023). Development of Evaluation Instruments to Measure the Quality of Spatial Problem Based Learning (SPBL): CIPP Framework. International Journal of Instruction, 16(2), 413–436. https://doi.org/10.29333/iji.2023.16223a

Siregar, A. U., Lubis, A., Darmana, A., & Suyanti, R. D. (2022). Analysis of Student Cognitive Ability using The K-Means Cluster and Rasch Model (Winsteps) on Chemical Materials through Zoom Meeting. Jurnal Komunikasi Pendidikan, 6(2), 91. https://doi.org/10.32585/jkp.v6i2.2474

Suhardi, I., & Budiyaningsih, H. E. (2022). Validasi Pakar Konten pada Pengembangan Paket Soal Bahasa Indonesia untuk Basis Data Computer Based Testing. Jurnal MediaTIK : Jurnal Media Pendidikan Teknik Informatika Dan Komputer, 38(2). https://doi.org/10.26858/jmtik.v5i2.33784

Sukmawati, W., & Zulherman, Z. (2023). Analysis of Changes in Students’ Scientific Literacy Ability After Attending Lectures Using the RADEC Model. Jurnal Penelitian Pendidikan IPA, 9(3), 1039–1044. https://doi.org/10.29303/jppipa.v9i3.2846

Sumintono, B., & Wahyu Widhiarso. (2015). Aplikasi Model Rasch untuk Penelitian Ilmu-Ilmu Sosial. TrimKom.

Sutiani, A., Muchtar, Z., Dibyantini, R. E., Sinaga, M., & Purba, J. (2022). Analisis Kemampuan Guru-Guru Kimia SMA Sumatera Utara Dalam Mengintegrasikan TPACK. Jurnal Inovasi Pembelajaran Kimia (Journal Of Innovation in Chemistry Education) , 4(2), 112–131. https://doi.org/10.24114/jipk.v4i2.39259

Syathroh, I. L., & Rizkiani, S. (2023). Developing English Research Article Writing Guide Textbook for Non-English Department Students Using The ADDIE Model. Indonesian EFL Journal (IEFLJ). https://doi.org/10.25134/ieflj.v9i1.7183

Wahyudi, A., Richardo, R., Eilks, I., & Kulgemeyer, C. (2023). Development of Three Tier Open-Ended Instrument to Measure Chemistry Students’ Critical Thinking Disposition Using Rasch Analysis. International Journal of Instruction, 16(3), 191–204. https://doi.org/10.29333/iji.2023.16311a

Widyaningsih, S. W., Yusuf, I., Prasetyo, Z. K., & Istiyono, E. (2021). The development of the hots test of physics based on modern test theory: Question modeling through e-learning of moodle lms. International Journal of Instruction, 14(4), 51–68. https://doi.org/10.29333/iji.2021.1444a

Yusmaita, E., Yuliani, F., Gazali, F., & Sumintono, B. (2022). Chemical Literacy Instrument on Oxidation and Reduction Reactions Material Through Rasch Model. Journal of Chemistry Education Research, 6 (2), 124–30. https://doi.org/10.26740/jcer.v6n2.p124-130


Refbacks

  • There are currently no refbacks.