Model Based Learning Approach Effects on Students Academic Performance and Attitudes in Earth science

Annalyn Cayago Canlas, Maydeen Dizon Guevarra

Abstract


Abstract: This study determined the effect of the model-based learning approach on students’ academic performance and attitudes in Earth science as well as the teachers perception. A total of four science teachers served as teacher respondents and sixty one of ninth-grade students served as student-participants in the research. To answer the objectives of the study, the science attitudes scale, standardized test, and perception survey questionnaire were administered. T-test was utilized to determine the significant difference in the students’ academic performance and attitudes in learning earth science and SWOT analysis was utilized on teachers’ perception. Findings revealed that the model-based learning and conventional approaches are both effective in enhancing students’ academic performance in earth science which the first approach has a positive effect on the student’s attitude toward science. Moreover, SWOT analysis revealed that the model-based learning approach is a learner-centered and teacher-facilitated approach that adheres to the goal and principles of K to 12 Basic Education Program of enhancing learners interest and motivation, maximizing learners’ 21 st century skills and scientific skills leading into holistically skill-competent learners through the model building. The overall result indicates that the model-based learning approach is a promising teaching strategy that can help improve students’ academic performance and develop a positive mindset in learning science. 

Keywords: model-based approach, attitudes toward earth science, academic performance.

 

Abstrak: Penelitian ini menentukan efek dari pendekatan pembelajaran berbasis model pada prestasi akademik dan sikap siswa dalam ilmu bumi serta persepsi guru. Sebanyak empat guru sains dan enam puluh satu siswa kelas sembilan sebagai subjek penelitian ini. Untuk menjawab tujuan penelitian, skala sikap sains, uji terstandarisasi, dan kuesioner survei persepsi diberikan. Uji Tukey digunakan untuk menentukan perbedaan yang signifikan dalam kinerja akademik siswa dan sikap dalam belajar ilmu bumi dan analisis SWOT digunakan pada persepsi guru. Temuan mengungkapkan bahwa pembelajaran berbasis model dan pendekatan konvensional keduanya efektif dalam meningkatkan kinerja akademik siswa dimana pendekatan pertama memiliki efek positif pada sikap siswa terhadap sains. Selain itu, analisis SWOT mengungkapkan bahwa pendekatan pembelajaran berbasis model adalah pendekatan yang berpusat pada peserta didik dan difasilitasi guru yang menganut tujuan dan prinsip-prinsip Program Pendidikan Dasar untuk meningkatkan minat dan motivasi peserta didik, memaksimalkan keterampilan abad ke-21, dan keterampilan ilmiah yang mengarah pada pembelajar kompeten melalui pembentukan model. Hasil keseluruhan menunjukkan bahwa pendekatan pembelajaran berbasis model adalah strategi pengajaran yang menjanjikan dalam membantu meningkatkan kinerja akademik dan mengembangkan pola pikir positif siswa dalam pembelajaran sains.

Kata kunci: pendekatan berbasis model, sikap terhadap ilmu bumi, dan prestasi akademik.

 

DOI: http://dx.doi.org/10.23960/jpmipa/v21i1.pp49-66


Full Text:

PDF

References


Abrahams, I. (2007). An unrealistic image of science. School Science Review, 88(324), 119–122.

Akcay, H., Yager, R. E., Iskander, S. M. & Turgut, H. (2010). Change in students’ beliefs about attitudes toward science in grades 6-9. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1-18.

Akerson, V.L., Townsend, J.S., Donnelly, L.A., Hanson, D.L., P. Tira, & White, O., (2009). Scientific modeling for inquiring teachers network (SMITN): The influence on elementary teachers’ views of nature of science, inquiry, and modeling. Journal of Science Teacher Education, 20, 21–40.

Ali, M. S., & Awan, A. S. (2013). Attitude towards science and its relationship with students’ achievement in science. Interdisciplinary Journal of Contemporary Research in Business, 4(10), 707-719.

Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching, and Assessing: A revision of Bloom's Taxonomy of Educational Objective (1st ed.). NY: Longman

Barmby, P. Kind, P. & Jones, K. (2008). Examining changing attitudes in secondary school science. International Journal of Science Education, 30(8). pp. 1075-1093.

Blumschein, P., Ludwigs, A., Hung, W. & Jonassen, D. (2009). Model-based Approaches to Learning: Using Systems Models and Simulations to Improve Understanding and Problem-Solving in Complex Domains: Sense Publishers.

Bryce, C., Baliga, V., & Nesnera, K., et al., (2016) Exploring Models in the Biology Classroom. The American Biology Teacher, 78(1), 35–42.

Clement, J. (2008). Creative Model Construction in Scientists and Students: The Role of Imagery, Analogy, and Mental Simulation. Library of Congress: Springer Science

Current Challenges in Basic Science Education. (2010). United Nations Educational, Scientific and Cultural Organization. Retrieved from http://unesdoc.unesco.org/images/0019/001914/191425e.pdf

Danusso, L., I. Testa, & Vicentini, M. (2010). Improving prospective teachers’ knowledge about scientific models and modeling: Design and evaluation of a teacher education intervention. International Journal of Science Education, 32 (7): 871–905.

Das, M. (2014). Importance of Science in School Curriculum. WeSchool Knowledge Builder - The National Journal, 2, 16-18.

Davis, E. (2011). Design approaches to support pre-service teachers in scientific modeling. Journal of Science Teacher Education, 22(1): 1–21.

Dela Cruz, M. (2017, March 11). Science Ed and thinking society. Philippine Daily Inquirer. https://www.pressreader.com/philippines/philippine-daily-inquirer/20170311/281754154122594

Fretz, E.B., Wu, H., Zhang, B., Davis, E.A., Krajcik, J.S. & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32, 567–589.

Gilbert, S., (2011). Models-Based Science Teaching: Understanding and Using Mental Models. Library Congress. U.S.A.: National Science Teachers Association.

Gobert, J. D., O’ Dwyer, L., Horwitz, P., Buckley, B. C., Tal Levy, S., & Wilensky, U. (2011). Examining the Relationship Between Students’ Understanding of the Nature of Models and Conceptual Learning in Biology, Physics, and Chemistry. International Journal of Science Education, 33(5), 653684.

Guay, F., Chanal, J., Ratelle, C. F., Marsh, H. W., Larose, S. and Boivin, M. (2010), Intrinsic, identified, and controlled types of motivation for school subjects in young elementary school children. British Journal of Educational Psychology, 80, 711–735. doi:10.1348/000709910X499084

Hacieminoglu, E. (2016). Elementary School Students’ Attitude toward Science and Related Variables. International Journal of Environmental & Science Education, 11(2), 35-52.

Halloun, I. A. (2007). Mediated Modeling in Science Education. Science & Education, 16, 653–697. doi:10.1007/s11191-006-9004-3

Hestenes, D. (2010). Modeling Theory for Math and Science Education. In R. Lesh, C. R. Haines, P. L. Galbraith & A. Hurford (Eds.), Modeling Students’ Mathematical Modeling Competencies (pp. 13-41): Springer US.

Jaiswal, S. & Choudhuri, R. (2017). Academic Self Concept and Academic Achievement of Secondary School Students. American Journal of Educational Research, 5(10), 1108-1113. DOI: 10.12691/education-5-10-13.

Jansen, M., Schroeders, U., & Lüdtke, O. (2013). Academic self-concept in science: Multidimensionality, relations to achievement measures, and gender differences. Elsevier Inc. 30(2014), 11-12.

https://doi.org/10.1016/j.lindif.2013.12.003

Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.

Kapici H. O., & Akcay, H. (2016). Middle school students’ attitudes toward science, scientists, science teachers and classes. Asia-Pacific Forum on Science Learning and Teaching, 17(1).

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877905.

Lacap, M. (2015). The Scientific Attitudes of Students Major In Science in the New Teacher Education Curriculum. Asia Pacific Journal of Multidisciplinary Research, 3(5), 7-15.

Lamanauskas, V. (2009). Gamtamokslinio ugdymo stiprinimo svarba ir būtinumas pradinėje mokykloje. Gamtamokslinis ugdymas / Natural Science Education, Nr. 1(24), p. 4-7.

Liu, C. & Long, F. (2014). The Discussion of Traditional Teaching and Multimedia Teaching Approach in College English Teaching. Atlantis Press, 31-33.

Louca, L., & Zacharia, Z. (2012). Modeling-based learning in science education: cogni tive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471–492.

Marsh, H. W., & Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and causal ordering. British Journal of Educational Psychology, 81, 59-77.

McFarlane, D. A. (2013). Understanding the Challenges of Science Education in the 21st Century: New Opportunities for Scientific Literacy. International Letters of Social and Humanistic Sciences, 4, 35-44.

Moutinho, S., Moura, R., & Vasconcelos, C. (2017). Contributions of Model-Based Learning to the Restructuring of Graduation Students’ Mental Models on Natural Hazards. EURASIA Journal of Mathematics Science and Technology Education, 13(7).

Moutinho, S., & Vasconcelos, C. (2017). Model-Based Learning applied to natural hazards. Journal of Science Education, 18(2).

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press.

Needham, R. (2014). The Contribution of Practical Work to the Science Curriculum. School Science Review, 95(352), 63-69.

NGSS Lead States (2013). Appendix F – Science and Engineering Practices in the NGSS. In Next Generation Science Standards: For States, By States.

Passmore, C., Stewart, J., & Cartier, J. (2009). Model-based inquiry and school science: Creating connections. School Science and Mathematics, 109(7): 394-402.

Potvin, P. & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85-129.

Reiss, M. & Ruthven, K. (2011). Enhancing the Participation, Engagement and Achievement of Young People in Science and Mathematics Education: Introduction. International Journal of Science and Mathematics Education, 9, 239-241.

Rodhe, A. (2012). Physical models for classroom teaching in hydrology. Hydrology and Earth System Sciences. 16, 3075–3082. doi:10.5194/hess-16-3075-2012

Schwarz, C. (2009). Developing Preservice Elementary Teachers’ Knowledge and Practices Through Modeling-Centered Scientific Inquiry. Wiley Periodicals, Inc. 93, 720 – 744. DOI 10.1002/sce.20324

Soomro, A. Q., Qaisrani, M. N., & Uqaili, M. A. (2011). Measuring students’ attitudes towards learning physics: Experimental research. Australian Journal of Basic and Applied Sciences, 5(11), 2282-2288.

Svoboda, J. & Passmore, C. (2011). The Strategies of Modeling in Biology Education. Science and Education. DOI 10.1007/s11191-011-9425-5

Thakur, Aman (2011). Teaching with Modern and Traditional Method. Retrieved from http://www.indiastudychannel.com/resources/146615-Teaching-with-modern-and-traditional-methods.aspx

Zwickl, B. M., & Hu, D. (2015). Model-based reasoning in the physics laboratory: Framework and initial results. American Physical Society, 11, 020113.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Pendidikan MIPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats

Creative Commons License
The copyright is reserved to The Jurnal Pendidikan MIPA that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.