Integrated STEM 3.0 Approach to Enhance Critical Thinking Skills: An Empirical Evidence

Ismu Sukamto, Hervin Maulina, Widyastuti Widyastuti, Ika Wulandari Utamining Tias, Tiyas Abror Huda, Dina Maulina

Abstract


Abstract: Integrated STEM 3.0 Approach to Enhance Critical Thinking Skills: An Empirical Evidence. Objectives: This study aimed to examine the effect of the STEM 3.0 approach assisted by real material and virtual simulation to enhance the CTS. Methods: The research method used Quasi-Experimental Designs with Matching-Only Pretest-Posttest Control Group Design. The subjects of this study were high school students of Class XI in Surabaya. Findings: Based on the research data, the increase in the CTS of students in the 2 experimental classes was classified as moderate with an average n-gain value of students in class A2 of 0.69 and class A5 of 0.63 while the increase in CTS in the control class was classified as moderate with a lower value (a score of 0.36). Based on the results of statistical tests, there is a significant difference between the experimental class and the control class. Conclusion: Thus, it is concluded that the integrated STEM 3.0 approach can enhance the CTS.

Keywords: integrated STEM 3.0, CTS, real material, virtual simulations.

Abstrak: Pendekatan STEM 3.0 Terintegrasi untuk meningkatkan Keterampilan Berpikir Kritis: Suatu Bukti Empirik. Tujuan: Penelitian ini bertujuan untuk menguji pengaruh pendekatan STEM 3.0 yang dibantu dengan materi nyata dan simulasi virtual untuk meningkatkan CTS. Metode: Metode penelitian yang digunakan adalah Quasi-Experimental Designs with Matching-Only Pretest-Posttest Control Group Design. Subjek penelitian ini adalah siswa SMA kelas XI. Temuan: Berdasarkan data penelitian, peningkatan CTS siswa pada 2 kelas eksperimen tergolong sedang dengan rata-rata nilai n-gain siswa kelas A2 sebesar 0,69 dan kelas A5 sebesar 0,63 sedangkan peningkatan CTS pada siswa kelas A2 sebesar 0,69 dan kelas A5 sebesar 0,63. kelas kontrol tergolong sedang dengan nilai lebih rendah (skor 0,36). Berdasarkan hasil uji statistik, terdapat perbedaan yang signifikan antara kelas eksperimen dan kelas kontrol. Kesimpulan: Dengan demikian, disimpulkan bahwa pendekatan STEM 3.0 terintegrasi dapat meningkatkan CTS.

Kata kunci: STEM 3.0 terintegrasi, CTS, material nyata, simulasi virtual.


DOI: http://dx.doi.org/10.23960/jpp.v12.i3.202219


Full Text:

PDF

References


Anazifa, R. D., & Djukri. (2017). Project- based learning and problem- based learning: Are they effective to improve student’s thinking skills? Jurnal Pendidikan IPA Indonesia, 6(2), 346–355. https://doi.org/10.15294/jpii.v6i2.11100

Arends, R. I. (2012). Learning to teach. McGraw-Hill Companies.

Bagheri, F., & Ghanizadeh, A. (2016). Critical thinking and gender differences in academic self-regulation in higher education. Journal of Applied Linguistics and Language Research, 3(3), 133–145.

BURRows, A., & Slater, T. (2015). A proposed integrated STEM framework for contemporary teacher preparation. Teacher Education and Practice, 28(2/3), 318–330.

Bustami, Y., & Corebima, A. D. (2017). The effect of JiRQA learning strategy on critical thinking skills of multiethnic students in higher education, Indonesia. International Journal of Humanities Social Sciences and Education (IJHSSE), 4(3), 13–22.

Cheng, K.-H., & Tsai, C.-C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449–462.

Conklin, J. (2005). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives complete edition. JSTOR.

DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE—Life Sciences Education, 8(3), 172–181.

Dehghani, M., Pakmehr, H., & Malekzadeh, A. (2011). Relationship between students’ critical thinking and self-efficacy beliefs in Ferdowsi University of Mashhad, Iran. Procedia-Social and Behavioral Sciences, 15, 2952–2955.

Ennis, H. R. (1996). Critical Thinking. Prentice-Hall, Inc.

Eskrootchi, R., & Oskrochi, G. R. (2010). A study of the efficacy of project-based learning integrated with computer-based simulation-STELLA. J. Educ. Technol. Soc., 13(1), 236–245.

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education.

Gunawan, G., Harjono, A., Hermansyah, H., & Herayanti, L. (2019). GUIDED INQUIRY MODEL THROUGH VIRTUAL LABORATORY TO ENHANCE STUDENTS’SCIENCE PROCESS SKILLS ON HEAT CONCEPT. Jurnal Cakrawala Pendidikan, 38(2), 259–268.

Hammack, R., Ivey, T. A., Utley, J., & High, K. A. (2015). Effect of an engineering camp on students’ perceptions of engineering and technology. Journal of Pre-College Engineering Education Research (J-PEER), 5(2), 2.

Huang, H.-M., Rauch, U., & Liaw, S.-S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171–1182.

Kaniawati, I., Samsudin, A., Hasopa, Y., Sutrisno, A. D., & Suhendi, E. (2016). The influence of using momentum and impulse computer simulation to senior high school students’ concept mastery. Journal of Physics: Conference Series, 739(1), 12060.

Karim, A. A., Khalid, F., Nasir, M. K. M., Maat, S. M., Daud, M. Y., & Surat, S. (2018). Enablers to Information Search and Use in Higher Learning. Creative Education, 9(14), 2089–2100.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 1–11.

Khasanah, A. N., Widoretno, S., & Sajidan, S. (2017). Effectiveness of Critical Thinking Indicator-Based Module in Empowering Student’s Learning Outcome in Respiratory System Study Material. Jurnal Pendidikan IPA Indonesia, 6(1), 120425.

Lichti, M., & Roth, J. (2018). How to foster functional thinking in learning environments using computer-based simulations or real materials. Journal for STEM Education Research, 1(1–2), 148–172.

Lin, Y.-C., Liu, T.-C., & Sweller, J. (2015). Improving the frame design of computer simulations for learning: Determining the primacy of the isolated elements or the transient information effects. Computers & Education, 88, 280–291.

Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in pre-college settings: Synthesizing research, policy, and practices (pp. 35–60). Purdue University Press.

Mutakinati, L., Anwari, I., & Kumano, Y. (2018). Analysis of students’ critical thinking skill of middle school through stem education project-based learning. Jurnal Pendidikan IPA Indonesia, 7(1), 54–65.

Norström, P. (2013). Engineers’ non-scientific models in technology education. International Journal of Technology and Design Education, 23(2), 377–390.

Prihatiningtyas, S., Prastowo, T., & Jatmiko, B. (2013). Imlementasi simulasi PhET dan KIT sederhana untuk mengajarkan keterampilan psikomotor siswa pada pokok bahasan alat optik. Jurnal Pendidikan IPA Indonesia, 2(1).

Putra, B. K. B., Prayitno, B. A., & Maridi, M. (2018). The effectiveness of guided inquiry and INSTAD towards students’ critical thinking skills on circulatory system materials. Jurnal Pendidikan IPA Indonesia, 7(4), 476–482.

Ramos, J. L. S., Dolipas, B. B., & Villamor, B. B. (2013). Higher order thinking skills and academic performance in physics of college students: A regression analysis. International Journal of Innovative Interdisciplinary Research, 4(1), 48–60.

Rotherham, A. J., & Willingham, D. T. (2010). 21st-century” skills. American Educator, 17(1), 17–20.

Rutten, N., Van Joolingen, W. R., & Van Der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136–153.

Saputri, A. C., & Rinanto, Y. (2018). Critical thinking skills profile of senior high school students in Biology learning. Journal of Physics: Conference Series, 1006(1), 12002.

Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 1–16.

Spector, J. M. (2019). Complexity, inquiry critical thinking, and technology: A holistic and developmental approach. In Mind, Brain and Technology (pp. 17–25). Springer.

Sulistijo, S. H., Sukarmin, S., & Sunarno, W. (2017). Physics learning using inquiry-student team achievement division (ISTAD) and guided inquiry models viewed by students achievement motivation. Jurnal Pendidikan IPA Indonesia, 6(1).

Sutarto, & Indrawati. (2017). Penggunaan Lembar Kerja Peserta didik (LKS) Berbasis Gambar Proses (GP) untuk Pembelajaran Mekanika di SMA. Prosiding Seminar Pendidikan IPA VIII 2017.

Suyono, & Hariyanto. (2015). Belajar dan Pembelajaran. Remaja Rosdakarya.

Wang, H.-H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 2.

Yeh, A. (2002). Analysis of high-order thinking abilities and instructional design. Journal of General Education, 1, 75–101.

Yu, K. C., Wu, P. H., & Fan, S. C. (2019). Structural Relationships among High School Students’ Scientific Knowledge, Critical Thinking, Engineering Design Process, and Design Product. International Journal of Science and Mathematics Education, 1–22.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Jurnal Pendidikan Progresif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats

Creative Commons License
The copyright is reserved to The Jurnal Pendidikan Progresif that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.