Student Readiness Scores a Rasch Model’s for Facing E-Learning Using Decision Tree and Ensemble Methods

Ester Antika, Sri Nurdiati, Kasiyah Junus, Mohamad Khoirun Najib

Abstract


Abstract: Prediction of Rasch Model’s Student Readiness Scores for Facing E-Learning Using Decision Tree and Ensemble Methods. Objective: This research aims to predict student readiness score in facing e-learning using Rasch models and machine learning. Methods: This research is a quantitative research using a non test instrument ini the form of a questionnaire using a Likert scale. The sample used were IPB University students. Analysis techniques use Rasch model, decision tree, and ensemble. Finding: Item reliability value is 0,93, person reliability value is 0,97, and cronbachalpha is 0,99. The standard deviation value is 2,34 and the average logit of respondents is 1,9. 34% of students have high readiness with a person measure value >2,34. 4% of students have moderate readiness with a score of 1,9 < person measure < 2,34. 62% of students have low readiness with a person measure value < 1,9. The accuracy of the decision tree model reached 75,97%. Conclusion: Based on person measure from the Rasch model, it can be concluded that the majority of respondents (62%) have low ability to carry out e-learning. Male students and those who have experience in dealing with e-learning have a higher percentage of having high ability in dealing with e-learning at the university level. Moreover, machine learning models are able to predict students' abilities in dealing with e-learning based on the measure score from the Rasch model. Furthermore, ensemble models are able to increase the accuracy of decision tree models. We found that the ensemble model with the LogitBoost (adaptive logistic regression) method provides best model in term of its accuracy (82.17%) and execution time.

 

Keywords: decision tree, e-learning, ensemble, machine learning, rasch model.



DOI: http://dx.doi.org/10.23960/jpp.v14.i1.202437

 

Full Text:

PDF

References


Almasri. (2022). The impact of e-learning, gender-groupings and learning pendagogies in biology undergraduate female and male students' attiudes and achievement. Education and Information Technologies (2022) 27:8329–8380. https://doi.org/10.1007/s10639-022-10967-z

Asni, Fajri, N., Astuti, S., & Chairunnisa, D. (2020). Pengembangan inventori perilaku asertif: analisis rasch model [development of an assertive behavior inventory: rasch model analysis]. Seminar Nasional Daring IIBKIN 2020, 6–12.

Babič, Š. H., Kokol, P., Podgorelec, V., Zorman, M., Šprogar, M., & Štiglic, M. M. (2000). The art of building decision trees. Journal of Medical Systems, 24(1), 43–52. https://doi.org/10.1023/A:1005437213215

Badan Pusat Statitik. 2023. Indeks pembangunan teknologi informasi dan komunikasi 2022 [information and communication technology development index 2022]. BPS RI.

Bukhari, F., Nurdiati, S., Najib, M. K., & Amalia, R. N. (2023). Deteksi penyakit jantung menggunakan metode klasifikasi decision tree dan regresi logistik [detection of heart disease using decision tree classification methods and logistic regression]. Sains, Aplikasi, Komputasi Dan Teknologi Informasi, 5(1), 41–49. https://doi.org/10.30872/jsakti.v5i1.10780

Ekstrand, J., Westergren, A., Arestedt, K. Hellstrome, A., Hagel, P. 2022. Transformation of rasch model logits for enhanced interpretability. bmc medical research methodology. https://doi.org/10.1186/s12874-022-01816-1

Fariani, R. I. (2013). Pengukuran tingkat kesiapan e-learning [e-learning readiness]. Seminar Nasional Aplikasi Teknologi Informasi (SNATI).

Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151. https://doi.org/https://doi.org/10.1016/j.engappai.2022.105151

Global Education Monitoring Report Team. (2023). Programme and meeting document. https://doi.org/10.54676/WJMY7427

Hartatiana. (2020). Analisis rasch model pada motivasi mahasiswa melalui implementasi e-learning berbasis schoology [rasch model analysis of student motivation through schoology-based e-learning implementation]. Jurnal Pendidikan Matematika RAFA, 6(2), 162–169. https://doi.org/10.19109/jpmrafa.v6i2.4335

Hasanah, S., Nurdin, E. A., & Herbert. (2014). Kajian implementasi e-learning berdasarkan tingkat kesiapan peserta e-learning [study of e-learning implementation based on the level of readiness of e-learning participants]. Prosiding Seminar Ilmiah Nasional Komputer Dan Sistem Intelijen, 8, 1–14.

Hermanto, B., & Miftahuddin, a. (2021). Tourism experience in indonesia: a new approach using the rasch model scale. GeoJournal of Tourism and Geosites, 38(4), 1051–1056. https://doi.org/10.30892/gtg.38409-743

Jamal, S. (2020). Analisis kesiapan pembelajaran e-learning saat pandemi covid-19 di smk negeri 1 tambelangan [analysis of e-learning readiness during the covid-19 pandemic at SMK Negeri 1 Tambelangan]. Jurnal Nalar Pendidikan, 8(1), 16. https://doi.org/10.26858/jnp.v8i1.13561

Kusnadi, A. (2015). Analisis kesiapan mahasiswa tentang implementasi e-learning di departemen pendidikan teknik elektro fakultas pendidikan teknologi dan kejuruan universitas pendidikan Indonesia [Undergraduate Thesis]. Universitas Pendidikan Indonesia.

Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: an introduction to data mining: second edition. In Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition (Vol. 9780470908). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118874059

Linarcre, J.M. (2020). Fit diagnosis: infit outfit mean-square standardized, Winstep (R). https://www.winsteps.com/winman/misfitdiagnosis.htm

Luthfa, I. (2016). Family Support in Patients of type 2 diabetes mellitus bangetayu health center in semarang, rasch model analysis. Nurscope Jurnal Keperawatan Dan Pemikiran Ilmiah, 2(2), 1–7. https://doi.org/10.30659/nurscope.2.1.12-23

Mardhiyana, D., & Nasution, N. B. (2018). Kesiapan mahasiswa pendidikan matematika menggunakan e-learning dalam menghadapi era revolusi industri 4.0 [readiness of mathematics education students using e-learning in facing the era of industrial revolution 4.0]. Seminar Nasional Pendidikan Matematika Ahmad Dahlan 2018, 31–35.

Mardiyah, & Puger, I. G. N. (2017). Kalibrasi Instrumen Kuesioner Penyesuaian Diri (Self Adjusment). DAIWI WIDYA Jurnal Pendidikan, 4(2), 28–42. https://doi.org/10.37637/dw.v4i2.5

Matore, M. E. E. M. (2021). Rasch model assessment for blomm digital taxonomy applications. computers, materials & continua. https://doi.org/10.32604/cmc.2021.016143

Merawati, D., & Rino. (2019). Penerapan data mining penentu minat dan bakat siswa smk dengan metode c4.5 [application of data mining to determine the interests and talents of vocational school students using the C4.5 Method]. Jurnal Algor, 1(1), 28–37.

Mohamad, M.M., Sulaiman, N.L., Sern, L.C., Salleh, K.M. (2014). Measuring the validity and reliability of research instruments. Procedia Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2015.08.129

Muslihin, H.Y., Suryana, D., Ahman, Suherman, U., Dahlan, T.H. (2022). Analysis of the Reliability and Validity of the Self-Determination Questionnaire Using Rasch Model. International Journal of Instruction Vol.15 No.2. https://doi.org/10.29333/iji.2022.15212a.

Parkes, M., Stein, S., & Reading, C. (2015). Student preparedness for university e-learning environments. The Internet and Higher Education, 25, 1–10. https://doi.org/10.1016/j.iheduc.2014.10.002

Purwandani, I. (2017). Analisa tingkat kesiapan e-learning (e-learning readiness) studi kasus: amik bina sarana informatika jakarta. Jurnal Bianglala Informatika, 5(2), 102–107.

Quinlan, J. R. (1993). C4.5 - Programs for machine learning. Morgan Kaufmann Publisher, Inc.

Qureshi, M. I., Khan, N., Raza H., Ismail, A.I.F. (2021). Digital technologies in education 4.0. does it enhance the effectiveness of learning?. International Journal of Interactive Mobile Technologies (iJIM). https://www.researchgate.net/publication/349656472_Digital_Technologies_in_Education_40_Does_it_Enhance_the_Effectiveness_of_Learning_A_Systematic_Literature_Review.

Ramdani, Z., Widyastuti, T., & Ferdian, F. R. (2018). Application of classical theory analysis, rasch model, & computer based test moodle: a pilot study. Indonesian Journal of Educational Assessment, 2(1), 21–20.

Reddy, G.T., Bhattacharya S., Ramakrishnan, S. S., Chowdhary, C.L., Hakak, S., Kaluri, R., Reddy, M. P. K. 2020. An Ensemble based Machine Learning model for diabetic retinopathy classification. IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9077904/authors

Robitzsch, A. (2021). A comprehensive simulation study of estimation methods for the rasch model. Stats 2021. https://doi.org/10.3390/stats4040048

Setiaji, B., & Dinata, P. A. C. (2020). Analisis kesiapan mahasiswa jurusan pendidikan fisika menggunakan e-learning dalam situasi pandemi Covid-19 [Analysis of the readiness of students majoring in physics education to use e-learning in the Covid-19 pandemic situation]. Jurnal Inovasi Pendidikan IPA, 6(1), 59–70. https://doi.org/10.21831/jipi.v6i1.31562

Shahzad, A., Hassan, R., Aremu, A.Y., Hussain, A., Lodhi, R. N. (2020). Effect of COVID-19 in E-learning on higher education institution student: the group comparison between male and female. Quality & Quantity (2021) 55:805–826 https://doi.org/10.1007/s11135-020-01028-z

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002

Sumintono, B., & Widhiarso, W. (2014). Aplikasi model rasch untuk penelitian ilmu-ilmu sosial. Trim Komunikata Publishing House.

Sumintono, B., & Widhiarso, W. (2015). Aplikasi pemodelan rasch pada assessment pendidikan. Trim Komunikata Publishing House.

Waryanto, N. H., & Insani, N. (2013). Tingkat kesiapan (readiness) implementasi e-learning di sekolah menengah atas kota yogyakarta [level of readiness for implementing e-learning in yogyakarta city high schools]. JPMS Jurnal Pendidikan Matematika Dan Sains, 1(2), 117–124. https://doi.org/10.21831/jpms.v2i2.2478

Yamashita, T. (2022). Analyzing Likert scale surveys with Rasch models. Research methods in applied linguistics Volume 1 Issue 3. https://doi.org/10.1016/j.rmal.2022.100022

Zine, M., Harrou, F., Terbeche, M., Bellahcene, M., Dairi, A., & Sun,Y. E-learning readiness assessment using machine learning methods. Sustainability 2023, 15, 8924. https://doi.org/10.3390/su15118924


Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Jurnal Pendidikan Progresif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats

Creative Commons License
The copyright is reserved to The Jurnal Pendidikan Progresif that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.