Assessing Pre-service Mathematics Education Teachers Deductive Reasoning via Proof Writing in Basic Geometry: The Power of SOLO Taxonomy

Ray Ferdinand Medallo Gagani

Abstract


Abstract: Assessing Pre-service Mathematics Education Teachers Deductive Reasoning via Proof Writing in Basic Geometry: The Power of SOLO Taxonomy. Objectives: This study characterizes the developmental patterns of deductive reasoning via proof-writing of pre-service mathematics education teachers using the Structure of the Observed Learning Outcome (SOLO) taxonomy. Methods: One hundred three pre-service teachers were given twelve items involving basic concepts of plane geometry to assess. An in-depth analysis of their proof was done and they were grouped through a two-step clustering technique. Findings: Four compatible levels of developmental pattern to the SOLO level were detected. At level 0, students do not know how to establish proof. At level 1, students provided a single or few valid ideas. Students demonstrating level 2 thinking provided many true ideas. However, the proofs are unclear and illogical. Level 3 students proof is precisely logical. Conclusion: The research concluded that the SOLO taxonomy is a precise framework for conceptual knowledge assessment and that knowledge indeed has structure. The use of the SOLO taxonomy for assessment activity is recommended.

Keywords: assessment; deductive reasoning, proof writing, SOLO taxonomy

Abstrak: Penilaian Penalaran Deduktif Calon Guru Pendidikan Matematika melalui Proof Writing Geometri Dasar: Kemampuan Taksonomi SOLO. Tujuan: Penelitian ini mengkarakterisasi pola perkembangan penalaran deduktif melalui penulisan bukti guru pendidikan matematika prajabatan dengan menggunakan taksonomi Structure of the Observed Learning Outcome (SOLO). Metode: Seratus tiga guru pra-jabatan diberikan dua belas item yang melibatkan konsep dasar geometri bidang untuk dinilai. Analisis mendalam terhadap pembuktian mereka telah dilakukan dan mereka dikelompokkan melalui teknik pengelompokan dua langkah. Temuan: Empat tingkat pola perkembangan yang kompatibel dengan tingkat SOLO terdeteksi. Pada level 0, siswa belum mengetahui cara pembuktian. Pada tingkat 1, siswa memberikan satu atau beberapa ide yang valid. Siswa yang mendemonstrasikan pemikiran tingkat 2 memberikan banyak ide yang benar. Namun, bukti-buktinya tidak jelas dan tidak logis. Pembuktian siswa tingkat 3 sangat logis. Kesimpulan: Penelitian tersebut menyimpulkan bahwa taksonomi SOLO merupakan kerangka kerja yang tepat untuk penilaian pengetahuan konseptual dan bahwa pengetahuan memang memiliki struktur.

Kata kunci: asesmen, penalaran deduktif, proof-writing, taksonomi SOLO.


DOI: http://dx.doi.org/10.23960/jpp.v13.i3.202307


Full Text:

PDF

References


Afriyani, D., & Sa'dijah, C. (2018). Characteristics of students' mathematical understanding in solving multiple representation task based on solo taxonomy. International Electronic Journal of Mathematics Education, 13(3), 281-287. https://doi.org/10.12973/iejme/3920

Aiken, L. R. (1979). Relationships between the item difficulty and discrimination indexes. Educational and Psychological Measurement, 39(4), 821–824. doi:10.1177/001316447903900415

Ashcraft, M. H. (1994). Human Memory and Cognition (2nd ed.). New York: Harper Collins College.

Baturo, A. R., & Cooper, T. (2008). Developing mathematics understanding through cognitive diagnostic assessment tasks. Department of Education, Employment and Workplace Relations. retrieved from https://eprints.qut.edu.au/18714/1/CDAT_complete_document.pdf

Benkhalti, A. (2017). An analysis of transition-to-proof course students' proof construction attempts. (Order No. 10633405). Available from ProQuest Dissertations & Theses Global.(1927640549). Retrieved April 16, 2023, https://search.proquest.com/docview/1927640549?accountid=173015

Biggs, J.B., & Collis, K.F. (1982). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcome) [Google Book version]. Retrieved from https://books.google.com.ph/books?id=xUO0BQAAQBAJ&printsec=frontcover#v=onepage&q&f=false

Biggs, J., & Collis, K.(1989).Towards a model of school-based curriculum development and assessment using the SOLO Taxonomy. Australian Journal of Education, 33(2), 151–163. https://doi:10.1177/168781408903300205

Biggs, J. & Tang, C. (2011). Teaching for Quality Learning at University. (4th ed.), [dig.ver.]. England: McGraw Hill.

Caniglia, J. C., & Meadows, M. (2018). An application of the Solo Taxonomy to classify strategies used by pre-service teachers to solve “one question problems. Australian Journal of Teacher Education, 43(9), 75-89. http://dx.doi.org/10.14221/ajte.2018v43n9.5

Carrascal, B. (2015). Proofs, mathematical practice and argumentation. Argumentation, 29(3), 305-324. http://dx.doi.org/10.1007/s10503-014-9344-0

Chan, C. C., Tsui, M. S., Chan, M. Y. C., & Hong, J. H. (2002). Applying the structure of the observed learning outcomes (SOLO) Taxonomy on student’s learning outcomes: An empirical study. Assessment & Evaluation in Higher Education, 27(6), 511–527. https://doi:10.1080/0260293022000020282

Chaphalkar, R., & Wu, K. (2020). Students’ reasoning about variability in graphs during an introductory statistics course. International Electronic Journal of Mathematics Education, 15(2), em0580. https://doi.org/10.29333/iejme/7602

Chick, H. (1998). Cognition in the formal modes: Research mathematics and the SOLO taxonomy. Mathematics Education Research Journal, 10(2), 4–26. https://doi.org/10.1007/BF03217340

Conner, A. (2013). Authentic argumentation with prospective secondary teachers: The case of 0.999… Mathematics Teacher Educator, 1(2), 172-180. https://doi.org/10.5951/mathteaceduc.1.2.0172

Cox, R. (2004). Using conjectures to teach students the role of proof. The Mathematics Teacher, 97(1), 48-52. Retrieved December 2, 2020, from http://www.jstor.org/stable/20871499

Crompton, H., Grant, M., & Shraim, K. (2018). Technologies to enhance and extend children’s under standing of geometry: A configurative thematic synthesis of the literature. Journal of Educational Technology & Society, 21(1), 59-69. Retrieved December 2, 2020, from http://www.jstor.org/stable/26273868

De Jong, T., & Ferguson-Hessler, M. G. (1996). Types and qualities of knowledge. Educational psychologist, 31(2), 105-113. Retrieved from https://ris.utwente.nl/ws/files/6401593/types.pdf

Dudley, D., & Baxter, D. (2009) Assessing levels of student understanding in pre-service teachers using a two-cycle SOLO model. Asia-Pacific Journal of Teacher Education, 37(3), 283-293. https://doi.org/10.1080/13598660903052282

Gagani, R. F. M., & Misa, R. O. (2017). Solo based-cognition levels of inductive reasoning in Geometry. Alberta Journal of Educational Research, 63(4), 344-356. https://doi.org/10.11575/ajer.v63i4.56331

Goodboy, A. K., & Martin, M. M. (2020). Omega over alpha for reliability estimation of unidimensional communication measures. Annals of the International Communication Association, 44(4), 422-439. https://doi.org/10.1080/23808985.2020.1846135

Groth, R. E., & Bergner, J.A. (2006). Preservice elementary teachers' conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8(1), 37-63. https://doi.10.1207/s15327833mtl0801_3

Günhan, B. C. (2014). An investigation of pre-service elementary school teachers' knowledge concerning quadrilaterals. Çukurova University. Faculty of Education Journal, 43(2), 137-154. Retrieved April 16, 2023, https://search.proquest.com/docview/1640676328?accountid=173015

Hingorjo, M. R., & Jaleel, F. (2012). Analysis of one-best MCQs: the difficulty index, discrimination index and distractor efficiency. JPMA-Journal of the Pakistan Medical Association, 62(2), 142-147. Retrieved April 16, 2023, https://jpma.org.pk/article-details/3255?article_id=3255

Huey, M. E. (2011). Characterizing middle and secondary preservice teachers' change in inferential reasoning (Order No. 3533846). Available from ProQuest Dissertations & Theses Global. (1262397961). Retrieved April 16, 2023, https://www.proquest.com/dissertations-theses/characterizing-middle-secondary-preservice/docview/1262397961/se-2

Imrie, B.W. (1995). Assessment for learning: quality and taxonomies. Assessment & Evaluation in Higher Education, 20(2), 175-189. https://doi.org/10.1080/02602939508565719

Johnson-Laird, P. N. (1999). Deductive reasoning. Annual Review of Psychology, 50(1), 109-135. https://doi.org/10.1146/annurev.psych.50.1.109

Jurdak, M. (1991). Van Hiele levels and the SOLO taxonomy. International Journal of Mathematical Education in Science and Technology, 22(1), 57-60. https://doi:10.1080/0020739910220109

Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563-575. Retrieved March 4, 2023, https://parsmodir.com/wp-content/uploads/2015/03/lawshe.pdf

Luo, X., Wei, B., Shi, M., & Xiao, X. (2020). Exploring the impact of the reasoning flow scaffold (RFS) on students’ scientific argumentation: based on the structure of observed learning outcomes (SOLO) taxonomy. Chemistry Education Research and Practice, 21(4), 1083-1094. https://doi.org/10.1039/C9RP00269C

Maarif, S., Perbowo, K. S., Noto, M. S., & Harisman, Y. (2019). Obstacles in constructing geometrical proofs of mathematics-teacher-students based on boero’s proving model. In Journal of Physics: Conference Series, 13151, p. 012043. IOP Publishing. doi:10.1088/1742-6596/1315/1/012043

Moseley, D., Baumeld, V., Elliott, J., Gregson, M., Higgins, S., Miller, J., & Newton, D. P. (2005). Frameworks for thinking: A handbook for teaching and learning [dig. Ver.]. Cambridge, UK: Cambridge University Press.

Mulbar, U., Rahman, A., & Ahmar, A. (2017). Analysis of the ability in mathematical problem-solving based on SOLO taxonomy and cognitive style. World Transactions on Engineering and Technology Education, 15(1). Available at SSRN: https://ssrn.com/abstract=2940939

Nardi, E., Biza, I., González-Martín, A.S., Gueudet, G., Winsløw, C. (2014). Institutional, sociocultural and discursive approaches to research in university mathematics education. Research in Mathematics Education, 16(2), 91–94. https://doi.org/10.1080/14794802.2014.918344

Niemela, P., Mikkolainen, V., & Vuorinen, J. (2018). Compute Mindlessly. Not! Map Consciously. Universal Journal of Educational Research, 6(11), 2669-2678. https://doi:10.13189/ujer.2018.061133

Nor, N. M., & Idris, N. (2010). Assessing students’ informal inferential reasoning using SOLO taxonomy based framework. Procedia-social and behavioral sciences, 2(2), 4805-4809. https://doi.org/10.1016/j.sbspro.2010.03.774

Ozdemir, A. S., & Goktepe Yildiz, S. (2015). The analysis of elementary mathematics preservice teach ers’spatial orientation skills with SOLO model. Eurasian Journal of Educational Research, 61,217-236. http://dx.doi.org/10.14689/ejer.2015.61.12

Putnam, R. T., Lampert, M., & Peterson, P. L. (1990). Chapter 2: Alternative Perspectives on Knowing Mathematics in Elementary Schools. Review of research in education, 16(1), 57-150. https://doi.org/10.3102/0091732X016001057

Radmehr, F. & Drake, M. (2019) Revised Bloom’s taxonomy and major theories and frameworks that influence the teaching, learning, and assessment of mathematics: a comparison. International Journal of Mathematical Education in Science and Technology, 50(6), 895-920. https://doi: 10.1080/0020739X.2018.1549336

Savalei, V., & Reise, S. P. (2019). Don’t forget the model in your model-based reliability coefficients: A reply to McNeish (2018). Collabra: Psychology, 5(1): 36. https://doi.org/10.1525/collabra.247

Sekaryanti, R., Cholily, Y. M., Darmayanti, R., Rahma, K., & Maryanto, B. P. A. (2022). Analysis of written mathematics communication skills in solving SOLO taxonomy assisted problems. JEMS:Jurnal Edukasi Matematika dan Sains, 10(2), 395-403. http://doi.org/10.25273/jems.v10i2.13707

Senk, S. (1985). How well do students write geometry proofs? The mathematics teacher, 78(6), 448-456. Retrieved December 1, 2020, http://www.jstor.org/stable/27964580

Senk, S.L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20(3), 309–321. https://doi.org/10.2307/749519

Sinclair N., Robutti O. (2012) Technology and the role of proof: The case of dynamic geometry. In: Clements M., Bishop A., Keitel C., Kilpatrick J., Leung F. (eds) Third International Handbook of Mathematics Education. Springer International Handbooks of Education, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4684-2_19

Sonnabend, T. (1997). Mathematics for elementary teachers: An integrative approach (2nd ed.). Orlando, FL: Saunders College Publishing.

Stålne, K., Kjellström, S., & Utriainen, J. (2015): Assessing complexity in learning outcomes – a comparison between the SOLO taxonomy and the model of hierarchical complexity. Assessment & Evaluation in Higher Education, 41(7), 1033-1048. https://doi.org/10.1080/02602938.2015.1047319

Wang, Y. (2008). On concept algebra: A denotational mathematical structure for knowledge and software modeling. International Journal of Cognitive Informatics and Natural Intelligence, 2(2), 1-8,10-19.RetrievedApril 16, 2023, https://search.proquest.com/docview/275149494?accountid=173015

Wong, B., & Bukalov, L. (2013). Improving student reasoning in geometry. The Mathematics Teacher, 107(1), 54-60. https://doi.org/10.5951/mathteacher.107.1.0054


Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jurnal Pendidikan Progresif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats

Creative Commons License
The copyright is reserved to The Jurnal Pendidikan Progresif that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.