Cognitive Load Theory Mathematical Resilience in a Variable Examples-Based Learning
Abstract
Keywords: cognitive load, resilience, variable examples-based learning.
Abstrak: Teori beban kognitif merupakan teori pembelajaran yang menekankan pada sifat terbatasnya kemampuan memori kerja dalam pemrosesan informasi. Beban kognitif germane merupakan salah satu yang mendukung dalam pembelajaran sehingga peserta didik memiliki usaha yang terus menerus dalam memahami materi. Usaha yang terus menerus dilakukan sampai mendapatkan hasil yang diinginkan disebut resiliensi. Permasalahan yang terjadi adalah calon guru matematika memiliki minat yang terbatas dalam memahami materi yang sulit. Minat sangat berhubungan erat dengan resiliensi. Minat yang terbatas ini mengakibatkan usaha yang dilakukan calon guru matematika kurang maksimal dalam memahami materi. Penelitian ini merupakan penelitian deskriptif kualitatif dengan tujuan untuk mendeskripsikan aspek resiliensi dalam pembelajaran berbasis beban kognitif Germane dengan menggunakan variable examples. Hasil penelitian menunjukkan tahapan pembelajaran berbasis beban kognitif dengan variable exemples adalah orientasi pada materi, mengorganisasi untuk variable exemples, membimbing pengerjaan, menyajikan hasil, dan mengevaluasi. Kesimpulan dalam penelitian ini adalah aspek resiliensi yang muncul dalam pembelajaran berbasis beban kognitif adalah aspek ketekunan, daya adaptasi, kreativitas, motivasi diri, rasa keingintahuan, dan kontrol diri.
Kata kunci: beban kognitif, resiliensi, pembelajaran berbasis contoh variable.
Full Text:
PDFReferences
Appendix to the Rules of Education and Culture Ministry No. 103 Year 2014 about Elementary and High Schools Learnings. 2014. Jakarta: PERMENDIKBUD
Al Ghifari, S. S., Juandi, D., & Usdiyana, D. (2022). Systematic Literature Review: The Effect of Mathematical Resilience toward Mathematical Higher Order Thinking Skills. Jurnal Cendekia : Jurnal Pendidikan Matematika, 6(2), 2025–2039. https://doi.org/10.31004/cendekia.v6i2.1271
Apostolou, D., & Linardatos, G. (2023). Cognitive Load Approach to Digital Comics Creation: A Student-Centered Learning Case. Applied Sciences (Switzerland), 13(13), 1–15. https://doi.org/10.3390/app13137896
Asih, K. S., Isnarto, Sukestiyarno, & Wardono. (2019). Mathematical Resilience in Discovery Learning to Upgrade Mathematical Communication. PRISMA, Prosiding Seminar Nasional Matematika, 2, 862–868.
Cahyani, E. P., Wulandari, W. D., Rohaeti, E. E., & Fitrianna, A. Y. (2018). Correlation between Students’ Study Interest & Mathematical Resilience toward mathematical Understanding Skill of Junior High School Students of Class VIII. Jurnal Numeracy, 5(1), 49–56.
Dan, A., & Reiner, M. (2017). REAL TIME EEG-BASED MEASUREMENTS OF COGNITIVE LOAD INDICATES MENTAL STATES DURING LEARNING. Journal of Educational Data Mining, 9(2), 31–44.
de Jong, T. (2010). Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought. Instructional Science, 38(2), 105–134. https://doi.org/10.1007/s11251-009-9110-0
Dervić, D., Đapo, N., Mešić, V., & Đokić, R. (2019). Cognitive Load in Multimedia Learning: An Example from Teaching about Lenses. JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH, 5(1), 102–118. https://doi.org/10.21891/jeseh.481698
Gutiérrez, Á., Blanco, P., Ruiz, V., Chatzigeorgiou, C., Oregui, X., Álvarez, M., Navarro, S., Feidakis, M., Azpiroz, I., Izquierdo, G., Larraga-García, B., Kasnesis, P., Olaizola, I. G., & Álvarez, F. (2023). Biosignals Monitoring of First Responders for Cognitive Load Estimation in Real-Time Operation. Applied Sciences, 13(13), 7368. https://doi.org/10.3390/app13137368
Kalyuga, S. (2011). Informing: A cognitive load perspective. Informing Science: The International Journal of an Emerging Transdiscipline, 14(1), 33–45. https://doi.org/10.28945/1349
Kirschner, P. A., Sweller, J., Kirschner, F., & Zambrano, J. R. (2018). From Cognitive Load Theory to Collaborative Cognitive Load Theory. International Journal of Computer-Supported Collaborative Learning, 13(2), 213–233. https://doi.org/10.1007/s11412-018-9277-y
Larmuseau, C., Vanneste, P., Cornelis, J., Desmet, P., & Depaepe, F. (2019). Combining physiological data and subjective measurements to investigate cognitive load during complex learning. Frontline Learning Research, 7(2), 57–74. https://doi.org/10.14786/FLR.V7I2.403
Lin, J. J. H., & Lin, S. S. J. (2014). Cognitive Load for Configuration Comprehension in Computer-Supported Geometry Problem Solving: an Eye Movement Perspective. International Journal of Science and Mathematics Education, 12(3), 605–627. https://doi.org/10.1007/s10763-013-9479-8
Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative Data Analysis, A Methods Sourcebook (3rd ed.). Sage Publications.
Paoletti, T., Vishnubhotla, M., & Mohamed, M. (2019). INEQUALITIES AND SYSTEMS OF RELATIONSHIPS: REASONING COVARIATIONALLY TO DEVELOP PRODUCTIVE MEANINGS. Proceedings of the 41st Annual Meeting of PME-NA, 157–166.
Şen Zeytun, A., Çeti̇nkaya, B., Kürşat ERBAŞ, A., & Bülent Çetinkaya, A. (2010). Mathematics Teachers’ Covariational Reasoning Levels and Predictions about Students’ Covariational Reasoning Abilities *.
Subanji. (2011). School Mathematics and Its Learning. J-Teqip, 1, 1–12.
Sweller, J. (2016). Working Memory, Long-Term Memory, and Instructional Design. Journal of Applied Research in Memory and Cognition, 5(4), 360–367. https://doi.org/https://doi.org/10.1016/j.jarmac.2015.12.002
Sweller, J., Ayres, P., & Kalyuga, S. (2011). COGNITIVE LOAD THEORY (Vol. 82, Issue 1). Cambridge University Press. http://www.springer.com/series/8640
Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5
Virlan, A. Y. (2022). The Role of Error Correction in Teaching and Learning of English from the Cognitive Load Perspective: A Case Study. JET (Journal of English Teaching), 8(2), 195–208. https://doi.org/10.33541/jet.v8i2.3698
Yohanes, B., & Darmawan, P. (2022). Mathematical Resilience of Prospective Mathematics Teachers in Problem-Based Learning. Jurnal Kajian Pembelajaran Matematika, 6(2), 96–107. http://journal2.um.ac.id/index.php/jkpm
Yohanes, B., & Yusuf, F. I. (2021a). Intrinsic Cognitive Load in Online Learning Model of School Mathematics 1 in Covid-19 Pandemic Period. JIPM (Jurnal Ilmiah Pendidikan Matematika), 9(2), 59. https://doi.org/10.25273/jipm.v9i2.7292
Yohanes, B., & Yusuf, F. I. (2021b). Cognitive Load Theory: Cognitive Maps in Solving Problems of Schools Mathematics. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(4), 2215. https://doi.org/10.24127/ajpm.v10i4.4033
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Pendidikan MIPA
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The copyright is reserved to The Jurnal Pendidikan MIPA that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.