Mathematic Reasoning Ability Based on Cognitive Style Field Dependent, Field Intermediate, and Field Independent

Afifah Afifah, Slamet Soro, Ayu Faradillah

Abstract


Abstract This study aims to see the effect of 3 types of cognitive styles on students mathematical reasoning abilities. According to previous research, there has been no research that discusses the 3 types of cognitive styles on mathematical reasoning abilities. The method in this study is a qualitative descriptive approach. The total population of this study was 32 people who sat in SMA class X MIPA A. The selection of subjects in this study was viewed from the top results based on 3 categories of field dependent cognitive style, intermediate field and field independent. So that the main sample is 3 people by representing each category of cognitive style. The selected subjects will be given a follow-up test, namely an interview test related to mathematical reasoning abilities. The results of this study indicate that the intermediate field cognitive style category has higher mathematical reasoning abilities. The conclusion is that the type of student's cognitive style affects the results of mathematical reasoning abilities. Therefore, the teacher's task is to pay more attention to students mathematical reasoning abilities according to their respective characteristics.

 

Keywords mathematical reasoning ability, cognitive style, field dependent, field intermediate and field independent

 

Abstrak Penelitian ini bertujuan untuk melihat pengaruh dari 3 tipe gaya kognitif terhadap kemampuan penalaran matematis siswa. Menurut penelitian sebelumya belum ada penelitian yang membahas pada 3 tipe gaya kognitif terhadap kemampuan penalaran matematis. Metode pada penelitian ini adalah pendektakan deskriptif kualitatif. Jumlah populasi penelitian ini 32 orang yang duduk dibangku SMA kelas X Mipa A. Pemilihan subjek dalam penelitian ini ditinjau dari hasil teratas berdasarkan 3 kategori gaya kognitif field dependent, field intermediate dan field independent.  Sehingga yang menjadi sampel utama sebanyak 3 oraang dengan mewakili setiap kategori gaya kogntif. Subjek yang terpilih akan diberikan tes lanjutan yaitu tes wawancara terkait soal kemampuan penalaran matematis. Hasil penelitian ini menunjukan bahwa kategori gaya kognitif field intermediate memiliki kemampuan penalaran matematis lebih tinggi. Kesimpulannya bahwa tipe gaya kognitif siswa mempengaruhi hasil kemampuan penalaran maematis. Oleh sebab itu, tugas guru lebih memperhatikan kemampuan penalaran matematis siswa sesuai dengan karakteristiknya masing-masing.

 

Kata kunci kemampuan penalaran matematis, gaya kognitif, field dependent, field intermediate dan field independent.


DOI: http://dx.doi.org/10.23960/jpmipa/v23i2.pp880-893


Full Text:

PDF

References


Adegoke, B. A. (2013). Modelling the Relationship between Mathematical Reasoning Ability and Mathematics Attainment. 4(17), 54–62.

Ayal, C. S. (2016). Peningkatan Kemampuan Penalaran Matematika Junior Siswa SMA dengan Menerapkan Strategi Pemetaan Pikiran. 7(25), 50–58.

Aziz, R., & Psikologi, F. (2015). APLIKASI MODEL RASCH. 12(1999).

Faradillah, A. (2018). Analysis of Mathematical Reasoning Ability of Pre-Service Mathematics Teachers in Solving Algebra Problem Based on Reflective and Impulsive Cognitive Style. Formatif: Jurnal Ilmiah Pendidikan MIPA, 8(2), 119–128. https://doi.org/10.30998/formatif.v8i2.2333

Fatemi, A. H., Vahedi, V. S., & Seyyedrezaie, Z. S. (2014). The effects of top-down/bottom-up processing and field-dependent/field-independent cognitive style on Iranian EFL learners’ reading comprehension. Theory and Practice in Language Studies, 4(4), 686–693. https://doi.org/10.4304/tpls.4.4.686-693

Firdausi, M., Inganah, S., & Putri Rosyadi, A. A. (2018). Kemampuan Koneksi Matematis Siswa Sekolah Menengah Pertama Berdasarkan Gaya Kognitif. MaPan, 6(2), 237–249. https://doi.org/10.24252/mapan.2018v6n2a9

Guisande, M. A., Páramo, M. F., Tinajero, C., & Almeida, L. S. (2007). Field dependence-independence (FDI) cognitive style: An analysis of attentional functioning. Psicothema, 19(4), 572–577.

Hadi, W., & Faradillah, A. (2019). The Algebraic Thinking Process in Solving Hots Questions Reviewed from Student Achievement Motivation. Al-Jabar : Jurnal Pendidikan Matematika, 10(2), 327–337. https://doi.org/10.24042/ajpm.v10i2.5331

Hayati, M. N., Fatkhurrohman, M. A., & Learning, B. (2020). Jurnal Pendidikan MIPA Pancasakti. E-Journal Ups, 4(januari 2020), 1–11.

Jami, S., & Wijayanti, K. (2020). Kemampuan Penalaran Matematis pada Pembelajaran TTW ( Think Talk Write ) Ditinjau dari Gaya Belajar Siswa. PRISMA, Prosiding Seminar Nasional Matematika, 3, 599–604.

Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and metacognitive training. American Educational Research Journal, 40(1), 281–310. https://doi.org/10.3102/00028312040001281

Linacre, J. M. (2012). A User’s Guide to WINSTEPS MINISTEP: Rasch-Model Computer Programs. In Winsteps. http://219.129.216.187:8083/demodownload/Winsteps User Manual.pdf

Novilia, L., Iskandar, S. M., & Fajaroh, F. (2016). the Effectiveness of Colloid Module Based on Guided Inquiry Approach To Increase Students’ Cognitive Learning Outcomes. International Journal of Education, 9(1), 17. https://doi.org/10.17509/ije.v9i1.3713

Prior, N. (2020). Marshall University. Graduate Study in Criminology and Criminal Justice, Mdm, 186–187. https://doi.org/10.4324/9781315721606-85

Putri, S., & Khusna, H. (2020). Rasch Model untuk Memvalidasi Instrumen Resiliensi Matematis Mahasiswa Calon Guru Matematika. 2682(1), 65–74.

Riding, R. J., & Sadler‐Smith, E. (1997). Cognitive Style and Learning Strategies: Some Implications for Training Design. International Journal of Training and Development, 1(3), 199–208. https://doi.org/10.1111/1468-2419.00020

Sadler-Smith, E., & Riding, R. (1999). Cognitive style and instructional preferences. Instructional Science, 27(5), 355–371. https://doi.org/10.1007/bf00892031

Sandelowski, M. (2000). Focus on research methods: Whatever happened to qualitative description? Research in Nursing and Health, 23(4), 334–340. https://doi.org/10.1002/1098-240x(200008)23:4<334::aid-nur9>3.0.co;2-g

Shodikin, A. (2017). the Effect of Learning With Abductive-Deductive Strategy on High School Students’ Reasoning Ability. International Journal of Education, 10(1), 67. https://doi.org/10.17509/ije.v10i1.8080

Siti Rodiah 1, V. A. T. 2. (2019). Analisis Kemampuan Penalaran Matematis Siswa Kelas IX MTS Pada Materi Sistem Persamaan Linear Dua Variabel Berdasarkan Gender. 3(April), 1–8.

Sumintono, B., & Widhiarso, W. (2013). Aplikasi Model Rasch Untuk Penelitian Ilmu-Ilmu Sosial.

Turale, S. (2020). A brief introduction to qualitative description: A research design worth using. Pacific Rim International Journal of Nursing Research, 24(3), 289–291.

Ulya, H. (2015). Kata Kunci: Gaya Kognitif; Kemampuan Pemecahan Masalah; Pemecahan Masalah. 1(2).

Valencia-Vallejo, N., López-Vargas, O., & Sanabria-Rodríguez, L. (2018). Effect of motivational scaffolding on e-learning environments: Self-efficacy, learning achievement, and cognitive style. Journal of Educators Online, 15(1). https://doi.org/10.9743/JEO2018.15.1.5

Vega-Vaca, M. L., & Hederich-Martínez, C. (2015). The Impact of a Cooperative Learning Program on the Academ-ic Achievement in Mathematics and Language in Fourth Grade Students and its Relation to Cognitive Style. Journal of New Approaches in Educational Research, 4(2), 84–90. https://doi.org/10.7821/naer.2015.7.124

Wakit, A., & Hidayati, N. (2020). Kemampuan Pemecahan Masalah Matematika Mahasiswa Teknik Sipil Ditinjau dari Gaya Kognitif. Kreano, Jurnal Matematika Kreatif-Inovatif, 11(1), 101–109. https://doi.org/10.15294/kreano.v11i1.21047

Watrianthos, R. (2019). Jurnal Pendidikan MIPA. Jurnal Pendidikan MIPA, 20(1), 23–29.

Witkin, H. A., Moore, C. A., Goodenough, D., & Cox, P. W. (1977). Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications. Review of Educational Research, 47(1), 1–64. https://doi.org/10.3102/00346543047001001


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Pendidikan MIPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats

Creative Commons License
The copyright is reserved to The Jurnal Pendidikan MIPA that is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.