Augmented Physics’ Lab: Magnetic Field Use Virtual Learning Media for 21st Century Students
Abstract
The 21st century has brought a paradigm change that shifts conventional learning towards technology-based learning. PISA data shows that Indonesia only achieved a score of 382, while TIMSS stated that the percentage of correct answers to the problem of understanding was always higher than the matter of application. This indicates that HOTS students in Indonesia have not yet developed optimally. This investigation intends to create worksheets for students implemented by augmented reality on magnetic field substance. This investigation was development research which used the Dick and Carey method. The product can display 3-Dimensional simulations. According to an investigation, the validation result of the students’ worksheets already met the criteria very well in terms of material with a percentage of 95%, in terms of media with a percentage of 86.8% and terms of learning with a percentage of 81%, and product trials by teachers with a percentage of 98%. Meanwhile, trials of students obtained an N-gain result of 0.64 which interpreted an increase in students' high-level thinking skills in the medium level. Therefore, it could be assumed that augmented physics' lab has been suitable for students' higher-order thinking skills.
Keywords: Augmented Reality, HOTS, Virtual Learning
DOI: http://dx.doi.org/10.23960/jpf.v8.n1.202007
Full Text:
PDFReferences
Anis, H., & Yusuf, A. M. (2017). Implementasi Lembar Kerja Berbasis Pertanyaan Produktif untuk Meningkatkan Kemampuan Berinkuiri Siswa SMA. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 2(2), 23–30.
Asyhar, N., Mujasam, Yusuf, I., & Widyaningsih, S. W. (2017). Pengembangan Media Pembelajaran Fisika Berbasis Multimedia Interaktif pada Materi Gerak Parabola di SMA. Prosiding Seminar Nasional, 3(1), 18–27.
Bakri, F., Sumardani, D., & Muliyati, D. (2019). Integrating Augmented Reality Into Worksheets: Unveil Learning To Support Higher-Order Thinking Skills. AIP Conference Proceedings 2169, 020012.
Bakri, F., Sumardani, D & Muliyati, D. (2019). The 3D Simulation of Lorentz Force Based on Augmented Reality Technology. Journal of Physics: Conference Series, 1402(6).
BSNP. (2019). Buku Saku Ujian Nasional 2019. Jakarta: Badan Standar Nasional Pendidikan.
Chiu, J. L., Dejaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science laboratories on middle school students’ understanding of gas properties. Computers and Education, 85, 59–73.
Civelek, T., Ucar, E., & Ustunel, H. (2014). Effects of a Haptic Augmented Simulation on K-12 Students’ Achievement and their Attitudes towards Physics. Eurasia J. Math. Sci. & Tech. Ed, 10(6), 565–574.
Deacon, C., & Hajek, A. (2010). Student Perceptions of the Value of Physics Laboratories. International Journal of Science Educational, 1–35.
Dick, W., & Carey, L. (2015). The Systematic Design of Instruction (8th ed.). The United States of America: Pearson Education, Inc.
Fannie, R. D. dan R. (2014). Pengembangan Lembar Kerja Siswa (LKS) Berbasis POE (Predict, Observe, Explain) pada Materi Program Linear Kelas XII SMA. Jurnal Sainmatika, 8(1), 96–109.
Fitriani, W. dan Bakri, F. (2017). Pengembangan Lembar Kerja Siswa (LKS) Fisika Untuk Melatih Kemampuan Berpikir Tingkat Tinggi (High Order Thinking Skill). Jurnal Wahana Pendidikan Fisika, 2(1), 36–42.
Hofstein, A., & Lunetta, V. N. (2003). The Laboratory in Science Education : Foundations for the Twenty-First Century. Lab. in Science Edu., 29–54.
Majzub, R. M. (2013). Teacher Trainees ’ Self Evaluation during Teaching Practicum. Procedia - Social and Behavioral Sciences, 102, 195–203.
Malik, A., Handayani, W., & Nuraini, R. (2015). Model Praktikum Problem Solving Laboratory untuk Meningkatkan Keterampilan Proses Sains Mahasiswa. Prosiding Simposium Nasional Inovasi Dan Pembelajaran Sains 2015 (SNIPS 2015), 193–196.
Muliyati, D., Ambarwulan, D., Sinarno, W., Sumardani, D., Bakri, F., Permana, H., & Putri, A. (2019). Simulation of Ocean Waves in Coastal Areas Using The Shallow-Water Equation. Journal of Physics: Conference Series, 1402(7).
Muliyati, D., Sumardani, D., Ambarwulan, D., Siswoyo, S., Handoko, E., & Fitriani, E. & Viridi, S. (2019). The 3-D Visualization of The Granular Particle on Various Diameter Porous Surfaces. Journal of Physics: Conference Series, 1402(7).
Nisa, F. (2015). Peningkatan Kemampuan Literasi dan Disposisi Matematis Siswa SMP Melalui Model Pembelajaran Treffinger. Skripsi. Tidak diterbitkan. Fakultas Sains dan Teknologi, UIN Sunan Kalijaga Yogyakarta.
Noss R. (2012). 21st Century Learning for 21st Century Skills: What Does It Mean, and How Do We Do It?. In: EC-TEL 2012. Lecture Notes in Compu. 7th European Conference on Technology Enhanced Learning, 3–5.
OECD. (2015). Programme for International Student Assessment 2015: Results in Focus. Retrieved January 1, 2019, from www.oecd.org/pisa
Oymak, O., & Ogan-Bekiroglu, F. (2017). Comparison of Students’ Learning and Attitudes in Technology Supported and Laboratory Based Environments. The Eurasia Proceedings of Educational & Social Sciences (EPESS), 6, 109–113.
Putri, & Risdianto, (2014). Profil Peralatan dan Keterlaksanaan Praktikum Fisika SMA di Wilayah Miskin Provinsi Bengkulu. Jurnal Exacta, 12(1), 1–6.
Pyatt, K., & Sims, R. (2012). Virtual and Physical Experimentation in Inquiry-Based Science Labs. J Sci Educ Tech. 21, 133–147.
Rahayu. (2013). Pengembangan Worksheet dengan Pendekatan Guided Inquiry pada Pokok Bahasan Suhu dan Kalor untuk Mengoptimalkan Domain Proses Sains Siswa SMA Kelas X. Radiasi, 3(1), 78–82.
Salsabila, Rahayu, Kharis, & Putri. (2019). Analysis of Mathematical Literacy on Students’ Metacognition in Conic Section Material. Journal of Physics: Conference Series, 1417(1), 1-8.
Sumardani, D., Midaraeni, I., Sumardani, N. I. (2019). Virtual Reality Sebagai Media Pembelajaran Relativitas Khusus Berbasis Google Cardboard pada Smartphone Android. Prosiding Seminar Nasional Pendidikan KALUNI, 2, 309-321.
Sumardani, D., Saraswati, R. R., Putri, A., Bakri, F., & Muliyati, D. (2020). System Implementation of Augmented Reality Application in Student Worksheet. Jurnal Informatika, 8(1), 10–18.
Sumardani, D., Putri, A., Saraswati, R. R., Bakri, F., & Muliyati, D. (2020). Virtual Reality Media: The Simulation of Relativity Theory on Smartphone. Jurnal Formatif, 10(1), 1-10.
Suparno, P. (2005). Miskonsepsi & Perubahan Konsep dalam Pendidikan Fisika. Jakarta: PT. Grasindo.
Srisawasdi, N., & Kroothkeaw, S. (2014). Supporting Students’ Conceptual Development of Light Refraction by Simulation-based Open Inquiry with Dual-situated Learning Model. J. Comput. Educ., 1(1), 49–79.
Taşlıdere, E. (2015). A Study Investigating the Effect of Treatment Developed by Integrating the 5E and Simulation on Pre-service Science Teachers’ Achievement in Photoelectric Effect. Eurasia Journal of Mathematics, Science & Technology Education, 1–16.
Yusuf, I., Widyaningsih, S. W., & Purwati, D. (2015). Pengembangan Perangkat Pembelajaran Fisika Modern Berbasis Media Laboratorium Virtual Berdasarkan Paradigma Pembelajaran Abad 21 dan Kurikulum 2013. Pancaran, 4(2), 189–200.
Wicaksono, I., Wasis, & Madlazim. (2017). The Effectiveness of Virtual Science Teaching Model (VS-TM) to Improve Student’s Scientific Creativity and Concept Mastery on Senior High School Physics Subject. Journal of Baltic Science Education, 16(4), 549–561.
Refbacks
- There are currently no refbacks.
Copyright (c) 2020
Copyright of the article is reserved by the author(s). Published by the Physics Education Study Program, Faculty of Teacher Training and Education, Universitas Lampung in Collaboration with the Physical Society of Indonesia (since 2019). This article is an open-access article under the Creative Commons non-commercial-share-alike 4.0 International License (CC BY-NC-SA 4.0) license.