Effectiveness of Laps-Heuristic Learning With An Open-Ended Approach on Critical Thinking Ability

Baiduri1*, Oktavia Kurniawati Putri1, & Alfiani Athma Putri Rosyadi1
1Department of Mathematics Education, Universitas Muhammadiyah Malang, Indonesia

*Corresponding email: baiduriumm@gmail.com

Received: 30 September 2022 Accepted: 10 November 2023 Published: 23 December 2023

Abstract: The objective of this study is to assess the efficacy of LAPS-Heuristic learning, coupled with an Open-Ended instructional approach, in enhancing the critical thinking skills of seventh-grade students in a middle school setting. The research employs an experimental methodology with a quantitative framework, specifically utilizing a posttest-only control group design. The study participants consist of seventh-grade students from classes VII A and VII C at SMP MTs Muhammadiyah 1 Malang during the 2022/2023 academic year. Data collection is achieved through a written critical thinking skills assessment. Analysis of the critical thinking ability test results is conducted using the Independent Sample T-test. The findings reveal significant disparities in the critical thinking abilities of seventh-grade students between the experimental group utilizing LAPS-Heuristic learning with an Open-Ended approach and the control group employing conventional teaching methods. Thus, it can be concluded that LAPS-Heuristic learning, when combined with an Open-Ended approach, proves to be an effective strategy for enhancing students’ critical thinking skills.

Keywords: critical thinking, open-ended, laps-heuristic

Kata kunci: berpikir kritis, open-ended, laps-heuristic.

To cite this article:

INTRODUCTION

In the era of the Fourth Industrial Revolution (Revolution 4.0), it is imperative for students to possess a range of 21st-century skills, including critical thinking, problem-solving, creativity, innovation, and collaboration (Chasanah, 2019). Educators and prospective teachers in the 21st century are expected to possess the skills necessary to nurture and support students’ readiness, curiosity, problem-solving capabilities, and critical thinking (Kuloglu & Karabekmez, 2022). Indeed, aligning with current research trends, contemporary education places a significant emphasis on fostering 21st-century skills, with a primary focus on the cultivation and enhancement of critical thinking abilities (Sarwanto et al., 2021; Setiana & Purwoko, 2020; J. Zhou et al., 2015). Critical thinking skills play a pivotal role in enabling students to think logically and are thus of paramount importance within the realm of education (Fitriani et al., 2020). The definition of critical thinking itself refers to a cognitive process adopted by individuals, characterized by a propensity to seek out information, evidence, and facts (Ouhibu & Nawel, 2022).

The observations conducted by researchers at MTs Muhammadiyah 1 Malang City during the learning process have revealed that students often promptly apply the mathematical formulas they’ve learned when solving problems. However, when presented with different or novel questions, many students encounter confusion in problem-solving. These findings underscore the existence of students who lack adequate critical thinking skills, a common challenge encountered in mathematics education. In the context of mathematics education, students often struggle to comprehend and solve problems due to their limited critical thinking skills (Lestari, 2021). In accordance with the findings of (Nofriansyah et al., 2018), the contemporary education landscape faces various challenges in the learning process, one of which is the continued use of traditional lecture-based teaching methods and the existence of inappropriate curricula. Consequently, the development of critical thinking skills has gained substantial attention both domestically and internationally, becoming a prominent concern among experts and scholars (Z. Zhou, 2018).

The use of conventional learning still focuses on the teacher when explaining the material being taught. Teachers can use a learning style that focuses on students so that they can involve students in solving problems and finding solutions that will be used (Kaitera & Harmoinen, 2022). Indeed, the selection of a learning method plays a significant role in shaping and influencing the process of unlocking and maximizing students’ learning potential (Pho et al., 2021). Various teaching methods, including LAPS-Heuristic learning, have been recognized as effective tools in enhancing students’ critical thinking abilities (Kamid et al., 2021; Selvia et al., 2017).

LAPS-Heuristic learning is an instructional approach that centers around students and their active engagement in problem-solving tasks. It specifically targets problems that have multiple potential solutions. This approach utilizes heuristic questions, which can be posed verbally or in written form, to guide students through the process of solving the presented problems. According to (Tambunan, 2018) heuristics in mathematics learning use 4 stages: understanding the problem, students are directed to understand concepts in mathematical language, finding a solution, students are able to make a solution plan, implementing a solution plan, students are able to make conclusions, and re-checking, students check the step-by-step conclusions from the results obtained. LAPS-Heuristic learning is an educational model derived from the Problem Solving learning model, further emphasizing its problem-solving focus and heuristic-based approach (Nofiyanti & Mohammad Zaky Tatsar, 2023).
LAPS-Heuristic learning has objectives in the learning process, one of which is to train students to get used to thinking critically and analyzing a problem that occurs, being able to train students’ courage and sense of responsibility in facing problems that occur, and 3) being able to know students in mastering the material that has been learned (Suparlan, 2022). The advantages of implementing LAPS-Heuristic learning are: it can increase curiosity, it can apply the knowledge gained, it invites students to have procedures for solving problems (Purba & Sirait, 2017). The disadvantage of implementing LAPS learning is that students need time to complete it, students who do not have interest do not try to solve problems.

Traditional teaching approaches generally focus on learning mathematical facts and procedures. Teachers who can develop innovative and innovative learning require a learning approach that is in accordance with LAPS-Heuristic learning in improving students’ critical thinking, one of which is the Open-Ended approach (Bayarcal & Tan, 2023). Open-Ended approach where students work individually or in groups are expected to be able to solve the problems given with a unique method (Munroe, 2015). The problems used have the possibility of more than one correct answer or the possibility of more than one way of solving (Kwon et al., 2006). The application of LAPS-Heuristic learning with an Open-Ended approach can be used as a new innovation in the open problem learning style which is expected to improve students’ critical thinking (Ridha, 2017).

Previous research that has implemented LAPS-Heuristic learning is related to learning outcomes in problem solving abilities, mathematical creative abilities, and improving critical thinking skills (Anggrianto et al., 2016; Dewi Astuti, 2020; Kamid et al., 2021). Several studies have conducted research using an Open-Ended approach, one of which is related to developing student proficiency in geometric material, to evaluate mathematical thinking methods, constructing knowledge in Open-Ended learning (Dugay & Pasia, 2023; Pott & Nortjé, 2021; Ueda et al., 2014).

From the research that has been carried out in the application of learning models and approaches, several researchers have conducted research to improve students’ critical thinking skills, one of which is related to the influence of idea discussion activities in Design Thinking; mathematics learning achievement; medium and high influence on gender, choice of subjects and type of management (Buphate & Esteban, 2022; Devika & Soumya, 2016; Merma-Molina et al., 2022). Several studies that have been conducted have not explicitly linked the LAPS-Heuristic learning model with the Open-Ended approach to students’ critical thinking abilities. Indeed, the primary focus of this research is to investigate and determine the effectiveness of LAPS-Heuristic learning when combined with an Open-Ended approach in enhancing the critical thinking abilities of seventh-grade junior high school students.

METHODS

Types and Research Approaches

This research employs an experimental research design, specifically utilizing a quantitative approach. The research design used is True Experimental Design, which is characterized by the random assignment of subjects to both the experimental and control groups (Cohen et al., 2017), allowing for a rigorous comparison between the two groups to assess the impact of LAPS-Heuristic learning with an Open-Ended approach on critical thinking abilities.

The choice of a Posttest Only Control Group design is appropriate for your research since it involves conducting the study with the experimental group and the control group in two
separate sessions, each comprising two meetings. This design allows for efficient data collection and is particularly suited for studying the impact of an intervention, such as LAPS-Heuristic learning with an Open-Ended approach, on critical thinking abilities by comparing the outcomes between the two groups after the intervention has taken place (Usman & Faradina, 2023).

Table 1. Research design

<table>
<thead>
<tr>
<th>No.</th>
<th>Aspect</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>X</td>
<td>O_1</td>
</tr>
<tr>
<td>R_2</td>
<td></td>
<td>O_2</td>
</tr>
</tbody>
</table>

Informasi:

R_1: The Experimental group was taken randomly
R_2: The Control group was taken randomly
X: Treatment (LAPS-Heuristic Learning with Open-Ended approach)
O_1: Test for Experimental Group
O_2: Test for Control Group

Research Subjects

The study used class VII students at MTs Muhammadiyah 1 Malang City in the 2022/2023 school year. Then using 2 classes, namely the experimental class (VIIC) which will be given treatment, namely LAPS-Heuristic learning with an Open-Ended approach, while the control class (VIIA) uses conventional learning. The number of subjects used in this research was 40 students. LAPS-Heuristic learning with an Open-Ended approach is learning that will use LAPS-Heuristic learning steps in which there are elements of the Open-Ended approach. The subjects in both the experimental and control classes possessed the same level of initial mathematical proficiency. This is evident from the homogeneity test results presented in Table 2, based on the mathematics scores from the end-of-semester examination for the second semester of the academic year 2022/2023.

Based on the information provided, it seems that the significance level (Sig.) in Table 2 for both the experimental class and the control class is 0.051, which is slightly higher than the conventional significance level of 0.05. This suggests that there may not be a statistically significant difference between the two classes in terms of their initial data for end-of-semester test grades. Consequently, it can be concluded that the initial data for the end-of-semester test grades for class VII in both the experimental and control classes originated from homogeneous conditions, meaning that the two groups had similar starting points or characteristics regarding their test grades.

Table 2. Test of homogeneity of variance

<table>
<thead>
<tr>
<th></th>
<th>Levene Statistics df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Means</td>
<td>4.072</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Based on Median</td>
<td>1.145</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Based on Median and with adjusted df</td>
<td>1.145</td>
<td>1</td>
<td>37.863</td>
</tr>
<tr>
<td>Based on trimmed mean</td>
<td>3.497</td>
<td>1</td>
<td>38</td>
</tr>
</tbody>
</table>

Data and Its Collections

The data in this study encompass both students’ mathematical abilities and their critical thinking skills. Mathematical abilities were gathered from the results of the end-of-semester examination for the second semester of the academic year 2022/2023 and were employed
to assess the homogeneity between the two classes, namely the control and experimental groups. Critical thinking skill data were essential to evaluate the effectiveness of LAPS-Heuristic learning with an Open-Ended approach and were collected through written tests. These assessments were conducted once, upon completion of the taught material.

Research Instrument

The instrument employed in this research consists of a test comprised of 5 test items. This test was developed by the researchers and is designed based on critical thinking indicators. The specific test indicators include: Problem Formulation: Assessing students’ ability to translate problems into mathematical concepts. Strategy and Tactic Development: Evaluating students’ capacity to identify relevant concepts related to the problem, enabling them to devise problem-solving strategies. Argument Analysis: Measuring students’ proficiency in critically assessing the validity of arguments. 4) Conclusion Drawing: Examining students’ ability to draw meaningful conclusions from the results obtained. The test instrument underwent validation by Mathematics Education Lecturers and Middle School Mathematics Teachers, with the results confirming its validity for use in this study.

Certainly, here’s an example of a test question. **Problem:** Mr. Agus is tasked with installing a roof for a rectangular swimming pool with a perimeter of 80 meters. The swimming pool roof has a maximum length of 35 meters and a minimum length of 25 meters, along with a maximum width of 20 meters and a minimum width of 5 meters. The height and width of the pool roof must both be integers. Determine the dimensions of the swimming pool roof that Mr. Agus should install, and calculate the area of the swimming pool roof. Please provide a clear explanation for your choices.

Data Analysis

The data utilized for this study consisted of scores from a critical thinking ability test. These scores were subsequently subjected to analysis using the Independent Sample t-test to determine whether the experimental class exhibited superior performance compared to the control class. Before conducting the Independent Sample T-test, certain prerequisites needed to be met. The requirement was that the data should exhibit a normal distribution. The normality of the data was assessed using the Shapiro-Wilk Normality test. Additionally, data normality if the probability sig > 0.05. All analysis was carried out using SPSS 22 Software. The decision-making process based on the t-test involved the following criteria:

- **H_0** (null hypothesis) is accepted if the probability sig (2-tailed) \(\geq 0.05 \).
- **H_0** is rejected if the probability sig (2-tailed) \(< 0.05 \).

In essence, accepting implies that there is no significant difference between the experimental class and the control class, while rejecting suggests that there is indeed a significant difference between the two groups.

RESULTS AND DISCUSSION

The effectiveness of employing LAPS-Heuristic learning with an Open-Ended approach in enhancing students’ critical thinking abilities is evident by examining the average scores on the critical thinking ability tests for both the experimental and control groups, as presented in Table 3.

Based on the data presented in Table 3, it is evident that the mean score for the experimental class is 74.800, while the control class has a mean score of 65.250. Additionally, the median score for the experimental class is 73.800, whereas the control class has a median score of 64.00. These findings lead to the conclusion that, on average, students in the experimental class, who were
Table 3. Descriptive statistic of experimental class and control class

<table>
<thead>
<tr>
<th></th>
<th>Eksperimen</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Valid</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Missing</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Mean</td>
<td>74.8000</td>
<td>65.2500</td>
</tr>
<tr>
<td>Std. Error of Mean</td>
<td>1.56205</td>
<td>1.49363</td>
</tr>
<tr>
<td>Median</td>
<td>73.8000</td>
<td>64.0000</td>
</tr>
<tr>
<td>Mode</td>
<td>69.00</td>
<td>61.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>6.98570</td>
<td>6.67970</td>
</tr>
<tr>
<td>Variance</td>
<td>48.800</td>
<td>44.618</td>
</tr>
<tr>
<td>Range</td>
<td>25.00</td>
<td>22.00</td>
</tr>
<tr>
<td>Minimum</td>
<td>64.00</td>
<td>56.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>89.00</td>
<td>78.00</td>
</tr>
</tbody>
</table>

exposed to LAPS-Heuristic learning with an Open-Ended approach, have achieved higher critical thinking ability scores compared to students in the control class who received conventional teaching methods.

The data collected in this study aligns with the observations made during the learning process in both classes. This consistency is in accordance with the findings of previous research (Ningsih & Husaini, 2020), one of the factors contributing to the development of students’ critical thinking skills is their increased level of engagement, as evidenced by their active participation in explaining their answers, even when those answers differ, and their ability to tackle problems without hesitation. In contrast, within the control class, students often experience boredom and encounter challenges in comprehending the materials presented by the teacher. Consequently, they exhibit a reduced capacity for critical thinking. A visual representation of the comparison of critical thinking skills between the experimental class and the control class for each indicator can be found in Figure 1.

Based on Figure 1, it can be inferred that the experimental class, which employed the LAPS-Heuristic approach with an Open-Ended method, yielded the following results: In indicator 1, students are adept at articulating the problem presented and formulating it into a mathematical
model, achieving an average score of 79, and in Indicator 2, students excel at devising appropriate problem-solving strategies based on their knowledge, attaining an average score of 87. Students are able to analyze the truth of an argument based on mathematical principles on indicator 3 with obtaining an impressive score of 93, as well as indicator 4, where students are able to draw conclusions from the steps that have been determined to get a value of 74. Whereas it is known that in the control class that uses conventional learning indicator 1 it gets a result of 77, indicator 2 gets a score of 65, as well as indicator 3 of 81. These findings highlight the notable differences in critical thinking performance between the experimental class, utilizing LAPS-Heuristic learning with an Open-Ended approach, and the control class, which relies on conventional learning methods.

The disparities in outcomes, influenced by the utilization of different learning models, clearly demonstrate that the experimental class outperforms the control class. This disparity can be attributed to the active engagement of students in the learning process, particularly in the experimental class. Indeed, in the process of learning mathematics, it is imperative to cultivate and encourage reasoning, analysis, evaluation, and interpretation of thoughts among students. These cognitive skills are essential for students to effectively comprehend and solve mathematical problems (Kurniawati & Ekayanti, 2020). The LAPS-Heuristic learning model, coupled with an Open-Ended approach, places students at the center of the learning process. It involves presenting open-ended problems that require students to engage in active thinking and explore multiple alternative solutions. This pedagogical approach is employed to enhance students’ critical thinking skills.

Subsequently, an inference analysis was conducted to assess the effectiveness of the critical thinking skills test after implementing LAPS-Heuristic learning with an Open-Ended approach. To perform the t-test, it is essential for the data to conform to a normal distribution, and therefore, a normality test is a necessary prerequisite. The results of the normality test, conducted using the Shapiro-Wilk test and the SPSS 22 application, are presented in Table 4.

<table>
<thead>
<tr>
<th>Class</th>
<th>Shapiro-Wilk Statistics</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Thinking Ability</td>
<td>Experiment Class</td>
<td>.951</td>
<td>20</td>
</tr>
<tr>
<td>Control Class</td>
<td>Control Class</td>
<td>.939</td>
<td>20</td>
</tr>
</tbody>
</table>

Based on the information provided in Table 4, it is evident that the significance value for both classes is greater than 0.05. Therefore, it can be concluded that the test scores for students’ critical thinking skills in both classes follow a normal distribution.

Subsequently, the mean difference test was performed using an independent sample t-test, facilitated by SPSS Statistics 22 software. The specific results of the t-test are presented in Table 5.

Based on the information provided in Table 5, it is evident that the test results for the difference in mean critical thinking ability scores, as determined by the t-test for Equality of Means, yielded a t-value of 4.419 with a significance level of 0.000, which is less than the significance threshold of 0.05. This indicates a statistically
Table 5. Independent sample t-test

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td></td>
</tr>
<tr>
<td>Thinking Ability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t</td>
<td>df</td>
<td>Sig. (2-tailed)</td>
<td>Mean Difference</td>
<td>s</td>
<td>std. Error Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances</td>
<td>4.419</td>
<td>38</td>
<td>.000</td>
<td>9.55000</td>
<td>2.16123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assumed</td>
<td></td>
</tr>
<tr>
<td>Equal variances</td>
<td>4.419</td>
<td>37.924</td>
<td>.000</td>
<td>9.55000</td>
<td>2.16123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not assumed</td>
<td></td>
</tr>
</tbody>
</table>

significant difference between the experimental and control classes. Consequently, it can be concluded that the implementation of LAPS-Heuristic learning with an Open-Ended approach effectively enhanced the critical thinking skills of seventh-grade junior high school students.

The results of this study indicate that the student’s critical thinking skills in the experimental class are better than the control class. The results of the test in the experimental class used LAPS-Heuristic learning with an average of 74.800, while in the control class with conventional learning, it was 65.2500. The findings of the t-test calculation, which reveal a significant difference between the experimental class and the control class, align with the outcomes of prior research conducted in this area (Azis & Fadillah, 2022), LAPS-Heuristic learning which is greater than students taught with conventional learning. These results provide further support for the effectiveness of the LAPS-Heuristic learning with an Open-Ended approach in enhancing students’ critical thinking skills (Sadat & Harisuddin, 2023; Anggrianto et al., 2016; Laksono, 2020), so that students are able to formulate problems, develop strategies and tactics, analyze arguments, and draw conclusions correctly in learning mathematics.

Utilizing the Open-Ended approach in mathematics education has been shown to encourage critical thinking, collaborative teamwork, and effective logical and argumentative communication (Mustamiroh et al., 2019; Ninomiya & Pusri, 2015). Supporting this research, a study found that mathematics learning using the LAPS-Heuristic approach with an Open-Ended approach yielded superior results compared to conventional teaching methods (Ridha, 2017).

In the experimental class, students demonstrated their critical thinking abilities through problem-solving. Some students exhibited well-structured critical thinking, aligning with predetermined indicators, while others showed commendable proficiency. In contrast, the control class exhibited discrepancies in the critical thinking abilities of certain students concerning the strategies employed and their ability to draw conclusions. The learning approach emphasized guiding students in formulating problems, devising strategies and tactics for analyzing predetermined arguments, and subsequently reaching informed conclusions. These findings align with the research which suggests that implementing LAPS-Heuristics in education simplifies problem-solving and nurtures the critical thinking skills of students (Ningsih & Husaini, 2020).

CONCLUSIONS

This study investigated the effectiveness of LAPS-Heuristic learning with an Open-Ended approach in improving the critical thinking skills of seventh-grade junior high school students. The
research employed an experimental design and utilized critical thinking ability tests as the primary data source. The research data demonstrated that students in the experimental class, exposed to LAPS-Heuristic learning with an Open-Ended approach, achieved higher average critical thinking ability scores compared to students in the control class, who received conventional teaching methods. The significant differences in critical thinking ability scores between the two classes were confirmed through statistical analysis, specifically the independent sample t-test, which revealed a statistically significant difference in mean scores. The results of this study support the notion that LAPS-Heuristic learning with an Open-Ended approach is an effective instructional method for enhancing students’ critical thinking skills of junior high school students. The findings support the notion that student-centered learning, active problem-solving, and open-ended questioning can have a substantial positive impact on students’ ability to think critically.

Indeed, the results of this research highlight the importance of creating an educational environment that actively cultivates and enhances students’ critical thinking skills. Such an environment equips students with the necessary abilities to navigate and succeed in today’s complex and ever-changing world. By implementing the suggested strategies and recommendations, educational institutions can play a pivotal role in preparing students to think critically, solve problems effectively, and excel in various aspects of their lives, both within and beyond the classroom. These skills are not only essential for academic success but also for their future roles as informed and adaptable individuals in an evolving society and workforce.

REFERENCES

Baiduri et al., Effectiveness of Laps-Heuristic Learning...

doi.org/10.4324/9781315456539

Dewi Astuti, E. S. (2020). Pengaruh model pembelajaran laps (logan avenue problem solving) heuristik terhadap kemampuan pemecahan masalah matematis siswa sma negeri 1 air joman (the influence of the laps (logan avenue problem solving) heuristic learning model on the mathematical problem solving ability of air joman 1 public high school students). Jurnal Pendidikan, 4(1), 275.

